| POCKET GUIDES

Spring Security
6 Recipes

Essential Techniques for Quick
and Secure Java Applications

Massimo Nardone

ApPress

Apress Pocket Guides

Apress Pocket Guides present concise summaries of cutting-edge
developments and working practices throughout the tech industry. Shorter
in length, books in this series aims to deliver quick-to-read guides that are
easy to absorb, perfect for the time-poor professional.

This series covers the full spectrum of topics relevant to the modern
industry, from security, Al, machine learning, cloud computing, web
development, product design, to programming techniques and business
topics too.

Typical topics might include:

e A concise guide to a particular topic, method, function
or framework

o Professional best practices and industry trends
e Asnapshot of a hot or emerging topic
e Industry case studies

o Concise presentations of core concepts suited for
students and those interested in entering the tech
industry

e Shortreference guides outlining ‘need-to-know’
concepts and practices.

More information about this series at https://1link.springer.com/
bookseries/17385.

https://link.springer.com/bookseries/17385
https://link.springer.com/bookseries/17385

Spring Security 6
Recipes

Massimo Nardone

Apress’

Spring Security 6 Recipes: Essential Techniques for Quick and Secure
Java Applications

Massimo Nardone
Helsinki, Finland

ISBN-13 (pbk): 979-8-8688-1296-5 ISBN-13 (electronic): 979-8-8688-1297-2
https://doi.org/10.1007/979-8-8688-1297-2

Copyright © 2025 by Massimo Nardone

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: Laura Berendson

Editorial Project Manager: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book
is available to readers on GitHub. For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1297-2

This book is dedicated to the memory of my loving late
father Giuseppe. Your support, your education,
your values made me the man I am now. You will be loved
and missed forever. I also would like to dedicate this book
to my children Luna, Leo and Neve. Your love and support
mean everything to me.
—Massimo

Table of Contents

About the AUthOrc.cccmmmssmmmmssmsmmsssssssss s ssanssssnnss xiii
About the Technical REVIEWETcusesssssmsssssnsssssasssssanssssanssssanssssansnss Xv
Acknowledgments.......ccccuusssssssmmssmmmmsssssssssssssssssesssssssssssnssssssssssssnnnnns Xvii
INtroduction........cccccmssemmmsssmnmsssnnmssssnsssssnnssssnsssssnsssssnsssssnnssssnnnnssnnnnnnns Xix
Chapter 1: Development ToOIScccevnsnmmnmmssssnnnmnsssssnnmsssssssnsssssssnnsnss 1
What IS Spring SECUNLY B7.......cccvveririererirserrererss s s s e ss s ssessessssessessens 1
PrODIBM..... e s 4
SOIULION ... 4
PrODIBM.....cee e 6
£ 0] 1 10 OSSR 6
PrODIBM.....oeeee e 7
SOIUTION ..t 7
PrODIBM..... e s 8
SOIULION ...t e 8
PrODIBM.....o e —————— 11
SOIULION ...t ———————— 11
PrODIEM.....oe e s 12
SOIUTION ...t 12
PrODIBM.....o e 14

vii

TABLE OF CONTENTS

SOIULION ...t 14
[(0] o] [T S 16
8310 1 0] S 16
PrODIBM.....oeeer s 18
SOIULION ... —————— 18
ProbIEM.....c e —————————————— 19
SOIUTION ...t 20
[(0] o[]S 20
8310 1 0] S 21
PrODIBM.....ceee s 22
SOIULION ... —————— 22
ProbIEM.....c e —————————————— 23
SOIULION ...t 23
11T 111 T o O 24

Chapter 2: Java Web Application with Spring Security,

JSP Tags, and Thymeleaf..........cccivrnssmmmmmmsssnnmmmssssnmmmssssnmmssssssnessnnns 25
PrODIBM....coe e e 26
SOIUTION .. s 26
ProBIBM.....ce i —————————————— 29
RST8] 1§ P 30
[(0] 0] [T 31
RS T0] 1 0] ST 31
PrODIBM....cee e 33
SOIUTION .. s 33
ProBIBM.....cee e —————————————— 35
RST8] 1§ P 35

viii

TABLE OF CONTENTS

ProBIBM.....ce e ————————————————— 40
RS0 1 O 40
[(0] 0] [T O 41
RS T0] 1 0] S 41
PrODIBM....coe e 41
SOIUTION ... s 41
ProBIBM.....ce e ————————————————— 42
RST8] 1 O 43
[(0] o] [T O 43
830 1 0] S 43
PrODIBM....coe e e 47
SOIUTION ... s 48
ProBIBM.....ce e ————————————————— 48
RST8] 1 O 49
[(0] o] [T 51
830 1 0] S 51
SUMMANY....eitieerrestrre s e e p e e 57
Chapter 3: Java Web Application and Spring Boot 3 Initializr............ 59
ProbIEM.....c e —————————————— 63
SOIULION ...t 63
[(0] 0] [T S 66
8310 1 0] S 67
[(0] o] [T SR 69
SOIULION ... ——————— 69
ProbIEM.....c e —————————————— 70
SOIULION ...t 71

ix

TABLE OF CONTENTS

ProBIBM.....cee e ————————————————— 72
RST8] 1 TR 72
[(0] 0] [T 76
B3 0] 1 0] S 76
PrODIBM....cee e 76
SOIUTION .. s 77
ProBIBM.....cee e —————————————— 81
RST8] 1§ P 81
[(0] o] [T 86
£ 10 1 0] S 86
SUMMANY....eitieerrertre et p e e 98
Chapter 4: Spring Data JDBC and H2 Database..........cccsunsssnnnssssssnnnnas 99
ProbIEM.....cec s ———————— 100
SOIULION ..t 100
g (0] 01 [T 1 ST 102
£ 10 1 0] 103
PrODIBM.....ceee s 103
SOIULION ...t —————— 103
ProbIEM.....cec s ———————— 106
SOIULION ...t 107
g (0] 0 [T 108
£ 0] 1 0] T 108
PrODIBM.....cee s 109
SOIULION ...cveee e ——————— 109
ProbIEM.....cec s ———————— 113
SOIULION ..t 113

TABLE OF CONTENTS

ProBIBM.....c e ———————————— 119
£ 0] 1 10 119
g (0] 0 [T ST 121
£ T0] 1 0] RS R 121
SUMMANY....ceiviertnerirese e r e e e s nr e 122

About the Author

Massimo Nardone has more than 29 years of
experience in information and cybersecurity
for IT/OT/I0T/I1oT, web/mobile development,
cloud, and IT architecture. His true IT passions
are security and Android. He holds an MSc

in computing science from the University of
Salerno, Italy. Throughout his working career,
he has held various positions, starting as a
programming developer and then security
teacher, PCI QSA, auditor, assessor, lead IT/
OT/SCADA/cloud architect, CISO, BISO,
executive, program director, OT/IoT/IloT

security competence leader, VP of OT security, etc. In his last working
engagement, he worked as a seasoned cyber and information security
executive, CISO, and OT, IoT, and IIoT security competence leader, helping
many clients to develop and implement cyber, information, OT, and IoT
security activities. He is currently working as Vice President of OT security
for SSH Communications Security. He is author of three books such as
Secure RESTful APIs, Spring Security 6 Recipes and Cybersecurity in

the Gaming Industry. Plus, he is a coauthor of numerous Apress books,
including Pro Spring Security, Pro JPA 2 in Java EE 8, and Pro Android
Games, and has reviewed more than 75 titles.

xiii

About the Technical Reviewer

Mario Faliero is a telecommunications
engineer and entrepreneur. He has more
than ten years of experience with radio 1
frequency hardware engineering. Mario has
extensive experience in numerical coding,
using scripting languages (MATLAB, Python)
and compiled languages (C/C++, Java). He

has been responsible for the development of
electromagnetic assessment tools for space and
commercial applications. Mario received his
master’s degree from the University of Siena.

Acknowledgments

Many thanks go to my wonderful children, Luna, Leo, and Neve, for
supporting me all the time. You are and will always be the most beautiful
reason of my life.

I want to thank my beloved late father Giuseppe and my mother Maria,
who always supported me and loved me so much. I will love and miss both
of you forever. My beloved brothers, Roberto and Mario, for your endless
love and for being the best brothers in the world. Brunaldo and Kaisa for
bringing joy and happiness to Luna and Leo.

Thanks a lot to Melissa Duffy for giving me the opportunity to work
as writer on this book, to Shobana Srinivasan for doing such a great job
during the editorial process and supporting me all the time, and of course
Mario Faliero, the technical reviewer of this book, for helping me to make
the book better.

—Massimo

xvii

Introduction

This book is for Spring Security beginners with a Spring Security 6 and
Boot 3-based Java Application Problem-Solution Approach to secure

the web tier. It will be a practical pocket guide to help the developers
understand how to develop and deploy secure Spring Framework 6 and
Spring Boot 3-based Enterprise Java applications with the Spring Security
Framework.

It will be structured as a problem and recipes, so for each small or big
need there will be a solution provided.

This book is about Spring Framework 6 and Spring Boot 3. Itis a
tutorial and reference that guides you through the implementation of
the security features for a Java Web Application by presenting consistent
solutions to security issues with Spring.

This book explores a comprehensive set of functionalities to
implement industry-standard authentication and authorization
mechanisms for Java applications, providing examples on how to develop
customized Spring Security login/logout, Spring Security and two-factor
authentication, etc.

To get the most out of this book, we recommend having the Spring
Security source code checked out on your computer and working
through the examples alongside both the book’s content and the Spring
Security codebase. This hands-on approach will not only help you grasp
each concept as it’s introduced but also teach valuable programming
techniques and best practices. Whenever possible, this method of studying
software is highly effective. If the source code is available, make sure
to explore it—sometimes, a few lines of code can convey more than a
thousand words.

Xix

INTRODUCTION

In this book, we focus on introducing Spring Boot 3, analyzing the
Spring Framework, and building Java Web Applications using Spring
Security v6 and Java 23. Spring Security v6 supports a wide range of
authentication mechanisms, and this book will look into Spring Security 6
integration with H2 DB, JWT, OAuth2.0, etc.

Prerequisites

The examples in this book are all built with Java 17+ and Maven 3.9.9.
Spring Security 6 was the version used throughout the book. Tomcat Web
Server v11 was used for the different web applications in the book, mainly
through its Maven plug-
in, and the laptop used was a ThinkPad Yoga 360 with 8GB of RAM. All the
projects were developed using the Intelli] IDEA Ultimate 2024.2.4.

You are free to use your own tools and operating system. Because
everything is Java based, you should be able to compile your programs on
any platform without problems.

Downloading the Code

The code for the examples given in this book is available via the Download
Source Code button located at https://github.com/Apress/Spring-
Security-6-Recipes.

https://github.com/Apress/Spring-Security-6-Recipes
https://github.com/Apress/Spring-Security-6-Recipes

CHAPTER 1

Development Tools

This pocketbook is in a problem-solution format, intended for Spring
Security beginners with a Spring Security 6 and H2 DB-based Java
Application Problem-Solution Approach to secure the web tier.

It is a practical pocket guide to help you understand how to develop
and deploy secure Spring Framework 6 and Spring Boot 3-based
Enterprise Java applications with the Spring Security Framework
and H2 DB.

The chapters of the book have a problem-solution structure, so for
each small or big need there will be a solution provided.

In this book, we will explore the comprehensive set of functionalities
to implement industry-standard authentication and authorization
mechanisms for Java applications, providing examples on how to develop
customized Spring Security with JSP tags and Thymeleaf, Boot Initializr,
Data JDBC, etc.

What Is Spring Security 67

Spring Security 6 is the latest version of the Spring Security Framework,
designed to provide comprehensive security features for Java applications,
particularly those built on the Spring ecosystem. It focuses on
authentication, authorization, and protection against common security
vulnerabilities, such as Cross-Site Request Forgery (CSRF) and session
fixation attacks.

© Massimo Nardone 2025
M. Nardone, Spring Security 6 Recipes, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1297-2_1

https://doi.org/10.1007/979-8-8688-1297-2_1#DOI

CHAPTER 1 DEVELOPMENT TOOLS

Here’s an overview of what’s new and essential about Spring and what
the key features of Spring Security 6 are:

1. Java 17 and Spring Framework 6+ Compatibility

e Spring Security 6 requires Java 17+ and is built
to be compatible with Spring Framework 6 and
Spring Boot 3. This enables developers to use
the latest language features and performance
improvements in Java 17.

2. Focus on Modern Security Practices

e The shift toward Zero Trust Security principles,
where every request is authenticated and authorized
independently, is supported in Spring Security.

3. Authorization with a Centralized
Authorization Manager

e Spring Security 6 introduces the
AuthorizationManager API as a centralized way to
manage and configure access control across your
application. This provides a unified way to apply
authorization rules across different layers and
endpoints.

4. OAuth 2.1 Support

e With OAuth 2.0 being widely adopted, Spring
Security 6 includes updated support for OAuth 2.1.

5. Security Filter Chain Customization

o The configuration process for security filters has
been streamlined with the SecurityFilterChain
bean. This allows more flexible and modular
configurations of security rules.

CHAPTER 1 DEVELOPMENT TOOLS

6. New Authorization and Access Policies

o Expanded support for custom authorization
rules allows developers to define specific
access policies for different types of requests
and roles with annotations like @PreAuthorize
and @PostAuthorize, along with the new
AuthorizationManager, so you can define custom
rules for each endpoint or service more intuitively.

7. Enhanced Security Context Management

o Improvements to the SecurityContextHolder make
it easier to manage user authentication details
throughout the application.

o The updated SecurityContext API allows
more robust handling of security contexts in
reactive applications, making Spring Security
6 well suited for both traditional and reactive
programming models.

8. Built-In Support for Servlet and Reactive Stacks

o Reactive Security: Spring Security 6 is compatible
with reactive programming in Spring WebFlux,
allowing for efficient, nonblocking security

mechanisms for real-time applications.

o Servlet Stack: Traditional Spring MVC applications
can still use all features, while Spring WebFlux users
can benefit from nonblocking reactive support.

CHAPTER 1 DEVELOPMENT TOOLS

9. Improved CSRF Protection

e CSRF protection mechanisms have been enhanced
and simplified, with more secure defaults for
managing CSRF tokens and a simplified API for
enabling/disabling CSRF protections as needed.

10. Easier Configuration for Password Encoding

e Spring Security 6 improves password management
by offering more built-in options for password
encoding with modern hashing algorithms such
as berypt.

Problem

Where does Spring Security fit in and where and why would you use Spring
Security?

Solution

Spring Security is a powerful, versatile framework specifically suited for
securing Java applications, particularly those using Spring. Here are some
key scenarios where it shines:

1. Web Security: Protects against common
vulnerabilities like Cross-Site Scripting (XSS), CSRE,
and clickjacking.

2. URL Security: Provides tools for securing URLs,
resource access, and enforcing HTTPS.

3. JVM Languages: Works best with Java, Groovy, or
Kotlin; it’s not compatible with non-JVM languages.

https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting

10.

11.

12.

13.

14.

15.

CHAPTER 1 DEVELOPMENT TOOLS

Role-Based Access: Ideal for applications needing
role-based authentication/authorization.

Web App Protection: Restricts access to web
applications, blocking unauthorized users.

Provider Integration: Supports integrations with
LDAP, Active Directory, OpenlD, and databases.

Object-Level Security: Allows fine-grained security
with Access Control Lists (ACLs) for specific users.

Nonintrusive: Configurable via filters, XML, SAOP,
and annotations, keeping it modular and separate
from core business logic.

Service Layer Security: Applies security rules
consistently across layers, including URLs and
methods.

Remember Me: Enables users to stay logged in

across visits.

Certificate-Based Authentication: Supports X.509
certificates for secure client-server authentication.

View Security: Controls visibility of page elements
based on the user’s role.

Advanced Access Rules: Allows custom rules using
Spring Expression Language (SpEL).

HTTP Status Handling: Automatically translates
exceptions into HTTP status codes (e.g., 403 for
access denied).

API Security: Secures REST APIs for external
applications.

CHAPTER 1 DEVELOPMENT TOOLS

16. Lightweight Server Compatibility: Works in
environments lacking full Java EE security support.

17. Java EE Alternative: Offers more flexibility and ease
of use than Java EE’s native security.

18. Seamless Spring Integration: Ideal for applications
already using Spring, as it leverages existing Spring
knowledge and tools.

Problem

Why upgrade to Spring Security 6?

Solution

There are several reasons to update to Spring Security 6. Here are some of
the most important:

e Better Performance: Since Java 17 and improvements
of the Spring Security framework, the applications can
benefit from better performance and modern language
features.

o Enhanced Security: Spring Security 6 includes
robust, modern security practices that address
today’s cybersecurity challenges, like Zero Trust and
OAuth 2.1.

o Future-Proofing: As Spring Framework and Java
evolve, older versions of Spring Security may become
unsupported. Upgrading to Spring Security 6 ensures
compatibility with future Spring and Java releases.

CHAPTER 1 DEVELOPMENT TOOLS

o Easier Configuration and Customization: The new
AuthorizationManager API and other configuration
improvements make it easier to set up fine-grained
access control policies without complex configurations.

Let’s now set up our development environment.

Setting up an environment for Spring Security 6 involves configuring
dependencies, establishing the appropriate Java version, and setting up a
project structure. Spring Security 6 requires Java 17+ and Spring Boot 3, so
ensure your environment meets these requirements.

Problem

In setting up the development environment, what is the list of software
you’ll need to download and install?

Solution

For this book, I used Windows 11 as OS. For our development
environment, you need to download and install the following tools in the
given order:

e Java SE Development Kit (JDK) 17+ (I used v23 as it was
the latest version available)

¢ Intelli] IDEA Ultimate Edition 2024.2.4
e Maven 3.9.9
e Apache Tomcat Server v11 (External)

Let’s go through the steps required to set up everything properly.

CHAPTER 1 DEVELOPMENT TOOLS

Problem

What is the correct version of the Java SE Development Kit and how to
setitup?

Solution

On most operating systems, the JDK comes in an installer or package, so
there shouldn’t be any problems.

Note Remember that the Java SE Development Kit and Java
SE Runtime Environment (JRE) require at a minimum a Pentium
Il 266MHz processor, 128MB of memory, and 181MB disk for
development tools for 64-bit platforms.

Download the JDK version specific to your Windows operating system
from the following link:

https://www.oracle.com/java/technologies/downloads/#jdk23-windows.

We will use the JDK version 23.0.1 in this book. Which I have installed
on a Windows 11 machine. In my case, I ran the file named “jdk-23_
windows-x64_bin.exe” which installed the JDK v23 onto my Windows
machine, as shown in Figure 1-1.

CHAPTER 1 DEVELOPMENT TOOLS

"M Java(TM) SE Development Kit 23.0.1 (64-bit) - Setup X

Welcome to the Installation Wizard for Java SE Development Kit 23.0.1

This wizard will guide you through the installation process for the Java SE Development Kit
23.0.1.

Figure 1-1. Installing JDK v23

Let’s set a JAVA_HOME system variable by following these steps:
1. Open the Windows Environment Variables.

2. Add the JAVA_HOME variable and point it to the JDK
installed folder (in my case, C: \Program Files\
Java\ jdk-23).

3. Append %JAVA _HOME%\bin to the system PATH
variable so that all of the Java commands will be
accessible from everywhere.

The result is shown in Figure 1-2.

CHAPTER 1

Computer Name Har

You mustbe logged ~ ;
User variables for massi

Performance z
Variable
Visual effects. pro¢
JAVA_HOME
OneDrive

OneDriveConsumer

User Profiles Path
Desktop settings r TEMP
T™P

Start-up and Recov
System start-up. s}

System variables

Variable

ComSpec

DriverData
NUMBER_OF_PROCESSORS
0s

Path

PATHEXT

PROCESSOR_ARCHITECTU...

Figure 1-2. Setting up the JAVA_HOME system variable

DEVELOPMENT TOOLS

Value
C:\Program Files\Java\ jdk-23
C:\Users\massi\OneDrive

Edit environment variable

C:\Program Files\Common Files\Oracle\Java\javapath
%SystemRoot%\system32

%SystemRoot%

%SystemRoot%\System32\Wbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
%SYSTEMROOT%\System32\OpenSSH\

C:\Program Files\dotnet\

C:\Program Files\Microsoft SQL Server\160\Tools\Binn\
C:\Program Files\Git\cd
[%JAVA_HOMEZ%\bin| |

New

Edit

Browse...

Delete

Move Up

Move Down

Edit text...

Cancel

Let’s test if the JDK installation was successful. Open a command

prompt and type the code shown in Figure 1-3.

™ Command Prompt

Microsoft Windows [Version 10.0.22631.4391]
(c) Microsoft Corporation. All rights reserved.

C:\Users\massi>java -version

| java version "23.0.1" 2024-10-

15

Java(TM) SE Runtime Environment (build 23.0.1+11-39)
Java HotSpot(TM) 6u4-Bit Server VM (build 23.0.1+11-39, mixed mode, sharing)

C:\Users\massi>

Figure 1-3. Testing the Java installation

10

CHAPTER 1 DEVELOPMENT TOOLS

Great! Java is now installed and ready to be used for the examples in
the book.

Problem

When using Spring Security v6, you can of course decide freely which
integrated development environment (IDE) tool you wish to use.

What is the right IDE to install when developing with Spring Security
v6 and why?

Solution

There are mainly two major IDEA commonly used when developing with
Spring Security v6, which are

o IntelliJ IDEA (recommended): Offers excellent
support for Spring projects, with features like Spring
Boot support, automatic code completion, Spring
Security-specific inspections, and built-in support for
JPA, testing, and more.

o Eclipse with Spring Tools 4 (STS4): If you prefer
Eclipse, install the Spring Tools 4 plug-in for optimized
support for Spring applications.

As you can see, Intelli] IDEA is recommended because in addition to
being an excellent support for Spring projects, it also offers features like
Spring Boot support and automatic code completion. The main difference
is that Eclipse is free of charge, while Intelli] IDEA is not.

For this book, I used the Intelli] IDEA Ultimate Edition 2024.2.4, which
has a free 30-day trial.

11

CHAPTER 1 DEVELOPMENT TOOLS

Problem

How to install and configure Intelli] IDEA Ultimate Edition 2024.2.4?

Solution

You can install the Intelli] IDEA Ultimate Edition 2024.2.4 for web and
enterprise development by following these steps:

1. Download the .exe file from https://www.
jetbrains.com/idea/download/?var=18section
=windows#section=windows.

2. Install the .exe file, which in our case is named
idealU-2024.2.4.exe.

Once installed, the directory should look like Figure 1-4.

12

https://www.jetbrains.com/idea/download/?var=1§ion=windows#section=windows
https://www.jetbrains.com/idea/download/?var=1§ion=windows#section=windows
https://www.jetbrains.com/idea/download/?var=1§ion=windows#section=windows

X S
J > ThisPC > OS(C) > ProgramFiles > JetBrains
R Sort = View ~ aee
Name - Date modified
: appletviewer.policy

= breakgen.dil
breakgen64.dll

& EE [

| breakgen64a.dll
|%] brokenPlugins.db

@ defender-exclusions.ps1
B elevator.exe

[%] format.bat

[a] fsnotifier.exe

: fsnotifier-wsl

[%] idea.bat

' idea.ico

: idea.properties

e idea.svg

' ideabd.exe

: ideabd.exe.vmoptions
[%] inspect.bat

' jetbrains_client64.exe

: jetbrains_client64.exe.vmoptions

(@] launcher.exe 10/23/2024 8:1

[%] ktedit.bat

[%) msvept40.dil

5l remote-dev-server.exe
] repair.exe

8] restarter.exe

] runnenwv.exe

L ttyfix

u Uninstall.exe

[®] WinProcessListHelper.exe

= WinShelllntegrationBridge.dIl

CHAPTER 1 DEVELOPMENT TOOLS

> Intelli) IDEA 202424 > bin

Type Size

POLICY File 1K8
Application extension 80KB
Application extension 91k8
Application extension 86 KB
Data Base File 79KB
Windows PowerShell Sc 19k8
Application 65KB
Windows Batch File KB

Application

File

Windows Batch File 9KB
ICO File 307KB
PROPERTIES File 11KB

Microsoft Edge HTML D

Application

VMOPTIONS File 1KB
Windows Batch File 1KB
Application 1452KB

VMOPTIONS File

Application 135K8

Windows Batch File 1KB

Application extension

Application
Application 10,567 |

Application

Application

File 30K8
Application 121K8
Application 251K8

Application extension

Figure 1-4. The Intelli] IDEA 2024.2.4 directory

Now Intelli] IDEA Ultimate Edition 2024.2.4 for web and enterprise
development tool is ready to be used. Figure 1-5 shows how the dashboard

looks when executing it.

13

CHAPTER 1 DEVELOPMENT TOOLS

o) IntelliJ IDEA

>t

Projects

Welcome to IntelliJ IDEA

v Remote Development
B SSH
4, WSL
Dev Containers
Customize
Plugins

Learn New Project Open Clone Repository

Take a quick onboarding tour

Start Tour in Java

Figure 1-5. The Intelli] IDEA Ultimate Edition 2024.2.4 for web and
enterprise development dashboard

Problem

Which build tools should you use when developing with Spring Security v6
and why?

Solution

When developing with Spring Security 6, the two most popular build tools
you might choose are Maven and Gradle.

14

Both tools can manage Spring Security 6’s dependencies and build
tasks effectively, so the best choice depends on your project and team
needs. Many developers start with Maven for simpler projects or if their

CHAPTER 1 DEVELOPMENT TOOLS

team has more experience with it and move to Gradle if they require more

build optimization and customization.
Why Use Maven?

Standardization: Maven has been around longer and
follows a standardized convention-over-configuration
approach, which simplifies project structure. This

is beneficial if you're working on a team or in an

environment that values consistency.

Dependency Management: Maven’s dependency
management is robust and straightforward. Spring
Security 6 depends on Spring Framework 6 and other
libraries, which Maven can manage efficiently.

Comprehensive Documentation and Community
Support: Since Maven has been widely used in

Java projects for many years, there’s extensive
documentation and community support available,
making it easier to find solutions for common issues.

Built-In Life Cycle: Maven provides a default life cycle
(such as clean, compile, test, package, and install)
that helps structure the build and deployment process
without additional configuration.

Compatibility with IDEs: Maven is well supported by
all major IDEs, including Intelli] IDEA, Eclipse, and VS
Code, which makes integration with your development

environment seamless.

15

CHAPTER 1 DEVELOPMENT TOOLS
Here is an XML example Maven configuration for Spring Security 6:

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

Problem

Why instead should we use Gradle as a build tool?

Solution

Here are the reasons why to choose Gradle instead of Maven:

o Flexibility and Performance: Gradle’s build scripts
use a Groovy or Kotlin DSL, which provides greater
flexibility and conciseness compared to XML-based
Maven scripts. Gradle’s incremental build system often
leads to faster builds, which is particularly useful for
larger projects.

o Easier Customization: Gradle’s script-based approach
makes it easy to customize the build process. You can
create custom tasks and automate complex build logic
that might be challenging to achieve with Maven.

16

CHAPTER 1 DEVELOPMENT TOOLS

o Dependency Management: Like Maven, Gradle also
has a powerful dependency management system.
It’s easy to add dependencies, and Gradle supports
advanced dependency resolution strategies.

e Build Caching and Incremental Builds: Gradle’s build
cache and incremental build capabilities can lead to
significantly faster build times, particularly in large,
multi-module projects.

o IDE Integration: Gradle is well supported by all
major IDEs (Intelli] IDEA, Eclipse, etc.) and integrates
seamlessly with Spring Boot projects.

Here is a Groovy example Gradle configuration for Spring Security 6:

dependencies {
implementation 'org.springframework.boot:spring-boot-
starter-security’
implementation 'org.springframework.boot:spring-boot-
starter-web'

Please consider these reasons when choosing between Maven and Gradle:

1. Project Type: If you're working on a simple,
straightforward project or if your team is more
familiar with Maven, it’s often the better choice.
Maven is stable and well supported, with a simpler,

convention-driven setup.

2. Project Complexity: For more complex or
multi-module projects, Gradle’s flexibility and
performance benefits make it a better choice. Gradle
is also preferred in projects that require custom
build logic or extensive automation.

17

CHAPTER 1 DEVELOPMENT TOOLS

3. Team Preference and Familiarity: Many
organizations have established build practices. If
your team has a preference or established standards
(e.g., Maven), it’s often more efficient to stick with
that tool.

4. Performance Needs: Gradle generally performs
faster than Maven, especially for large projects with
many modules. If your project’s build times are a
priority, Gradle may be the better choice.

5. Integration with Other Tools: Both Maven and
Gradle integrate well with CI/CD tools (like Jenkins,
GitLab CI, and GitHub Actions), so choose the one
that aligns best with your existing setup.

Shortly, you should use

e Maven: Best for projects needing convention,
simplicity, and widespread team familiarity.

e Gradle: Ideal for complex projects needing flexibility,
performance, and advanced customization.

For this book, I will use Maven 3.9.9.

Problem

How to install and configure Maven 3.9.9?

Solution

You can install Maven 3.9.9 by downloading the . zip file named apache-
maven-3.9.9-bin.zip at this web page: https://maven.apache.org/
download.cgi.

18

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

CHAPTER 1 DEVELOPMENT TOOLS

Unzip the file apache-maven-3.9.9-bin.zip as shown in Figure 1-6.

Open File - Security Warning X
Do you want to open this file?

Name: ..ers\massi\Downloads\apache-maven-3.9.9-bin.zip

Publisher: Unknown Publisher

+ Extract Compressed (Zipped) Folders

Select a Destination and Extract Files

Always ¢
Files will be extracted to this folder:
w ki:\Program Files\Java\apache-maven-3.9.9 Browse...
1 e
dc

Show extracted files when complete

Figure 1-6. Local Maven 3.9.9 installation

Problem

How to install and configure the Intelli] IDEA 2024.2.4 tool and configure
Maven 3.9.9?

19

CHAPTER 1 DEVELOPMENT TOOLS

Solution

In order to use Maven 3.9.9 with Intelli] IDEA 2024.2.4, we must
configure where the local version of Maven is installed, which is done
by opening Intelli] IDEA 2024.2.4 settings, and under “Build, Execution,
Development,” choose Maven and configure as shown in Figure 1-7.

Settings

Q- Build, Execution, Deployment > Build Tools > Maven

v Appearance & Behavior Work offline

Appearance
 Execute goals recursively
Menus and Toolbars

System Settings Print exception stack traces

File Colors Always update snapshots

Scopes Output level: Info

Notifications

Data Editor and Viewer Checksum policy No Global Policy

Quicktists Multiproject build fail policy: Default
Path Variables
Presentation Assistant Thread count

Keymap

Maven home path C:\Program Files\Java\apache-maven-3.9.9
Editor

.39
Plugins (Version: 3.9.9)

> Version Control User settings file: Override
Build, Execution, Deployment
v Build Tools
v Maven & Use settings from .mvn/maven.config

Local repository: Override

Importing
Ignored Files
Runner
Running Tests
Repositories

Archetype Catalogs

Cancel Apply

Figure 1-7. Local Maven 3.9.9 is configured into Intelli] IDEA
2024.2.4

Now Maven 3.9.9 is ready to be used.

Problem

Why and when to use Apache Tomcat Server with Spring Security v6?

20

CHAPTER 1 DEVELOPMENT TOOLS

Solution

Using Apache Tomcat with Spring Security 6 is a common choice for
building secure, Java-based web applications due to a combination of
Tomcat's stability, lightweight architecture, and compatibility with Spring
Security’s robust security features.

The combination of those provides a powerful, flexible, and secure
environment for deploying Java-based web applications. Together,
they offer

o Lightweight and efficient performance for secure
applications

e Seamless integration, especially for projects built on
the Spring ecosystem

¢ Advanced authentication, authorization, and session
management features

o Flexible HTTPS and SSL/TLS configurations for secure
communications

e Scalability and reliability, making Tomcat suitable for
production deployments

Combining Apache Tomcat with Spring Security 6 is ideal for
organizations that need a stable and secure platform for web applications
without the added complexity of a full Java EE application server. By
leveraging Tomcat with Spring Security 6, you can build robust, secure
applications that are both performant and easy to manage.

When using Apache Tomcat with Spring Security 6, you'll need to
configure both the server and your Spring Security settings to ensure
a secure, smooth deployment. Spring Security 6 is compatible with
Apache Tomcat and brings powerful tools for managing authentication,
authorization, and securing endpoints.

21

CHAPTER 1 DEVELOPMENT TOOLS

Problem

How to install and configure Apache Tomcat Server v11 to be used with
Spring Security v6?

Solution

The first step is to download and install the Apache Tomcat Server v11
.exe file named apache-tomcat-11.0.0.exe at https://tomcat.apache.
org/download-11.cgi.

Install the exe file to the default folder which is C:\Program Files\
Apache Software Foundation\Tomcat 11.0. Since you need to allow Spring
projects to deploy to Tomcat Servers, you need to define Tomcat users to
access to Tomcat Manager. This can be done when installing Tomcat v11 as
shown in Figure 1-8 or manually by updating the file named tomcat-
users.xml in the conf directory and adding the following XML fragment
inside the <tomcat-users> element:

<role rolename="manager-gui"/>

<role rolename="manager-script"/>

<user username="tomcat" password="tomcat" roles="manager-gui,
manager-script"/>

22

https://tomcat.apache.org/download-11.cgi
https://tomcat.apache.org/download-11.cgi

CHAPTER 1 DEVELOPMENT TOOLS

Apache Tomcat Setup: Configuration Options = X
™
Configuration %
Tomcat basic configuration.
Server Shutdown Port -1
HTTP/1.1 Connector Port 8080
Windows Service Name ~Tomcat11

Create shortcuts for all users O

Tomcat Administrator Login User Name tomacat
(optional)
Password Ty
Roles manager-gui, manager -scnpd

< Back Cancel

Figure 1-8. Installation of Apache Tomcat v11 with new roles

Now Apache Tomcat Server and plug-in v11 are ready to be used.

Problem

How to configure the right JDK package into the Intelli] IDEA
2024.2.4 IDE tool?

Solution

Before starting a new Spring project, you want to make sure the right JDK
package is installed into the Intelli] IDEA 2024.2.4 IDE tool to compile your
examples and avoid the typical compiling issue where the JRE is found
instead of JDK. The configuration is shown in Figure 1-9.

23

CHAPTER 1 DEVELOPMENT TOOLS

2] Project Structure
< Name:
Project Settings
Project JDK home path: ~ C:\Program Files\Java\jdk-23
Modules
Libraries Classpath Sourcepath Annotations Documentation Paths
Facets Bt
Artifacts C3 C:\Program Files\Java\jdk-23!\java.base
Platform Settings
SDKs
Global Libraries

C3 C:\Program Files\Java\jdk-23!\java.compiler

3 C:\Program Files\Java\jdk-: datatransfer
C2 C:\Program Files\Java\jdk-: va.desktop
Problems C3 C:\Program Files\. va.instrument

3 C:\Program Files\Java\jdk-23!\java.logging

3 C:\Program Files\Java\j \java.management

C3 C:\Program Files\Java\j va.management.rmi
C2 C:\Program Files\Jay \java.naming

3 C:\Program Files\Java\jdk-23!\java.net.http

3 C:\Program Files\Java\jdk-23!\java.prefs

C2 C:\Program Files\Javal\jdk-

C3 C:\Program Files\Javalj

2 C:\Program Files\Java\

C3 C:\Program Fil va\jdk-23!\java.security.jgss

C3 C:\Program Files\Javaj va.security.sas|

3 C:\Program Files\Jav \java.smartcardio

3 C:\Program Files\Javalj va.sql

C3 C:\Program Files\Java\jdk-: va.sgl.rowset

[C:\Program Files\Javalji \java.transaction.xa
C3 C:\Program Files\Java\jdk-23!\java.xml

[3 C:\Program Files\Java\jdk-23!\java.xml.crypto

C3 C:\Program Files\Java\jdk-: k.accessibility

Cancel

Figure 1-9. Configuring the JDK to compile your examples

So now the JDK compiler is set, and you are ready to start writing and

running your first Spring web application example.

Summary

We introduced all the tools needed to create the environment to develop
Spring Security Java Web Applications. You learned how to install and
configure all the tools needed for these examples, and you should have a
good idea of what is needed to build a Spring Security v6 project.

In the next chapter, you will learn how to build your first Java Web
Application project.

24

CHAPTER 2

Java Web Application
with Spring

Security, JSP Tags,
and Thymeleaf

After we set up all the needed development tools, we can now learn how to
create a new Java Web Application project with Spring Security v6, JSP tags,
and Thymeleaf.

Please note that for this example we will not use the Boot 3 Initializr
tool to autogenerate our project, but instead we will learn how to write our
own Java code.

With your development tools set up, you can now create your first Java
Web Application project using Intelli] IDEA 2024.2.4 with Spring Security
v6, JSP tags, and Thymeleaf.

To create your first Java EE Web Application project in Intelli] IDEA
2024.2.4, follow these steps:

1. Use the wizard to create a new Maven project.

2. Name the application Pss01, and add a .jsp file that

'"

displays “Hello Spring Security

3. Run the Web Application on Tomcat Server v11.

© Massimo Nardone 2025 25
M. Nardone, Spring Security 6 Recipes, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1297-2_2

https://doi.org/10.1007/979-8-8688-1297-2_2#DOI

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

This setup doesn’t include security and is a basic introduction to
building Java Web Applications with Intelli] and Maven.

Problem

How do we create our first Web Application project?

Solution

As afirst step, launch the Intelli] IDEA tool and select File » New »
Project » Jakarta EE » Web Application and fill out all information about
the project, as shown in Figures 2-1 and 2-2.

26

CHAPTER 2

2} New Project

Q

J Java
Kotlin
Groovy

C2 Empty Project

Maven Archetype

4 Jakarta EE

o Spring Boot

B JavaFx
Quarkus
Micronaut
Ktor

¥ Compose for Desktop
HTML
React
Express
Angular CLI
Vue.js

Vite

Name:

Location:

Template:

Application server:

Language:

Build system:

Group:

Artifact:

JDK:

JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Pss01

~\ldeaProjects

Create Git repository

Web application

Tomcat 11.0.0

REVE] Kotlin Groovy

Maven Gradle

com.apress

PssO1]

323

Cancel

Figure 2-1. Your first Java Web Application project

27

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

o

J New Project

S Version: Jakarta EE 11

Dependencies:

et Core Profile Eclipse Jersey Server
o Batch REST framework that provides a JAX-RS (JSR 370)
implementation.
y Bean Validation
o Contexts and Dependency Injection (CDI)
o Concurrency Utils
o Connector Architecture (JCA)
\ Data

o Enterprise Java Beans (EJB)

o JSON Binding (JSON-B)

3y JSON Processing (JSON-P) Added dependencies:

sy Message Service (JMS) Serviet
o Model View Controller (MVC)
o NoSQL
Persistence (JPA)
3 RESTful Web Services (JAX-RS)
3 Security

o Server Faces (JSF)

o Serviet

Traneantian [ITA)

Previous Create Cancel

Figure 2-2. Configuration for your first Java Web Application project

In the Package Explorer, you should now see your Pss01 project. If you
expand it and all its children, you'll see something like Figure 2-3.

28

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

B Pss01 v Version control v ¥ Tomcat 11.0.0 v
Project

v [2Pss01 Ci\Users\massilldeaProjects\Pss01
> [.idea
> B .mvn
v Bsrc
v 3 main

6o

java

v B3 com.apress.pss01

> = Scratches and Consoles

Figure 2-3. Your first Java Web Application project structure
In general, the structure of most Java Web Application projects
will contain

o The target directory: Used to house all output of
the build

o The src directory: Contains all of the source material
for building the project, its site, etc.

e src/main/java: Application/library sources
e src/main/resources: Application/library resources
e web: Web application sources

e Pom.xml: File description of the project

Problem

How do we need to configure the pom.xml file?

29

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Solution

Let’s update the Java Web Application project’s files needed for your first
simple application. Please note that for this simple Java Web Application
example, you will not need to add any specific dependency to the project
file pom.xml, which looks initially like Listing 2-1.

Listing 2-1. The pom.xml file with servlet dependencies

<?xml version="1.0" encoding="UTF-8"2>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.apress</groupld>
<artifactId>Pssoi1</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Pss01</name>
<packaging>war</packaging>

The project right now only contains one simple . jsp file named
index.jsp, which you will update to show the text you wish, as shown in
Listing 2-2.

Listing 2-2. The index.jsp file

<%@ page contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" %>

<IDOCTYPE html>

<html>

30

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

<head>
<title>My first Web Applications</title>

</head>

<body>

<h1><%= "Hello Spring Security vé6!" %>

</h1>

</body>

</html>

Problem

How to configure and run our first Web Application?

Solution

Click the Add Configuration button, located at the top right of the IntelliJ
tool, to configure how to run your first example.

You can run your project using the external Tomcat Server v10, as
shown in Figure 2-4.

31

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Y | Run/Debug Configurations
+ -0

Name: Tomcat 11.0.0
v < Tomcat Server = :

¥ Tomcat 11.0.0
Server Deployment Logs Code Coverage Startup/Connection

Application server: Tomcat 11.0.0
Open browser
o After launch @ Default v with JavaScript debugger

URL: http://localhost:8080/Pss02/

VM options:

On 'Update’ action: Restart server v ~ Show dialog

On frame deactivation: = Do nothing

JRE:

Tomcat Server Settings
HTTP port: 8080 Deploy applications configured in Tomcat instan
HTTPs port: Preserve sessions across restarts and redeploy
JMX port:

AJP port:

Figure 2-4. Configure the running steps of your first Maven project

Now you can open your web browser and type the web address
http://localhost:8080/Pss01, as shown in Figure 2-5.

© O (3 My first Web Applications X I+

&< O (D localhost:8080/Pss01/

Hello Spring Security v6!

Figure 2-5. The Java Web Application project running in a
web browser

32

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Your first Java Web Application project was done now, so let’s create a
new Spring Security 6 project.

Spring Security integrates well with the Spring ecosystem, allowing
developers to start simple and learn advanced concepts over time.

There are two ways to create a new Spring project.

You can either create a Spring project via Spring Initializr, which we
will learn in Chapter 3, or via any IDE tool, which in this case is IntelliJ
IDEA 2024.2.4.

To build a basic Spring Security example, you could set up a Maven
project where users need to authenticate as “user” or “admin” to access
secure resources.

If you use the stand-alone installation of the Spring Security reference
release and choose not to use an IDE to build your Maven project, you'll
notice multiple folders in the installation directory. Each folder typically
represents a subproject or module, dividing Spring Security’s functionality
into distinct and specialized components.

Problem

Where can I find and what includes the Spring Security v6 source package?

Solution

Open source software has an invaluable characteristic for software
developers: free access to all source code. With this, we can understand
how our favorite tools and frameworks work internally, and we also can
learn a lot about the way other (perhaps very good) developers work,
including what practices, techniques, and patterns they use. Free access
to source code also enables us, in general, to gather ideas and experience

33

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

for our own development. As a more practical matter, having access to the
source code allows us to debug these applications in the context of our
application; we can find bugs or simply follow our application’s execution
through them.

Currently, Spring Security and most Spring projects live in GitHub. You
probably know about GitHub (https://github.com/).If you don't, you
should definitely take a look at it because it has become a standard public
source code repository for many open source projects in a multitude of
programming languages.

GitHub is a repository and a hosting service for Git repositories, with
a very friendly management interface. The Spring Security project can be
found inside the SpringSource general GitHub section at https://github.
com/spring-projects/spring-security.

To get the code, just download and install it.

A short description of some of the most important modules included
in Spring Security v6 can be found at https://docs.spring.io/spring-
security/reference/modules.html

The most important modules include

o Core: spring-security-core.jar

+ Remoting: spring-security-remoting.jar

e Web: spring-security-web.jar

o Config: spring-security-config.jar

o LDAP: spring-security-ldap.jar

e OAuth 2.0 Core: spring-security-oauth2-core.jar

e OAuth 2.0 Client: spring-security-oauth2-client.jar
e OAuth 2.0 JOSE: spring-security-oauth2-jose.jar

e OAuth 2.0 Resource Server: spring-security-oauth2-

resource-server.jar

34

https://github.com/
https://github.com/spring-projects/spring-security
https://github.com/spring-projects/spring-security
https://docs.spring.io/spring-security/reference/modules.html
https://docs.spring.io/spring-security/reference/modules.html

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

ACL: spring-security-acl.jar
CAS: spring-security-cas.jar
Test: spring-security-test.jar

Taglibs: spring-security-taglibs.jar

Problem

How do we add Spring Security v6 to our previous Maven Java Web

Application?

Solution

Let’s create a new one named “Pss02” and add Spring Security v6 in it.

Here are the steps you will follow to build the simple Spring Security

Maven Web Application project:

Import the required Spring Framework and Spring
Security v6 libraries into the project (into the pom.
xml file).

Configure the project to be aware of Spring Security.

Configure the users and roles that will be part of
the system.

Configure the URLs that you want to secure.
Create all needed Java and web files.

Run the Spring Security v6 project using the external
Tomcat Server v11.

35

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Since we are using Maven, the first step will be including Spring
Security jar dependencies in pom.xml, which are

e spring-security-core
e spring-security-config
e spring-security-web
e spring-webmvc
Here are the Maven dependencies you must add to the pom.xml file:

<dependency>

<groupId>org.springframework.security</groupId>
<artifactId>spring-security-core</artifactId>
<version>6.3.2</version>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
<version>6.1.4</version>

</dependency>

<dependency>
<groupld>org.springframework.security</groupId>
<artifactId>spring-security-web</artifactId>
<version>6.1.0</version>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>6.1.13</version>

</dependency>

36

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

We will then update the index.jsp page as shown in Listing 2-3.

Listing 2-3. index.jsp

<%@ page contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8" %>

<IDOCTYPE html>

<html>

<head>
<title>Welcome to Spring Security 6 authentication
example!</title>

</head>

<body>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<h2>You are an authenticated user!</h2>

</body>
</html>

Since we added Spring Security to the project, it will secure the entire
project by default, given a generated security password to be entered
together with “user” as the username. So when we type localhost:8080,
Spring will require us to provide the newly created username “user” and
password “e6fd5a38-b7a8-4d55-b47a-9ece6e3341fa” to log in, as shown in
Figure 2-6.

37

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

@ O ([Peasesignin x B - O X
& G © localhost8080/Pss02/login £ A ¢ B - @

Please sign in

user

Figure 2-6. Secure Spring application with login page

If we enter the wrong password, we will get the message shown in
Figure 2-7.

38

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

© O () Pleasesignin x -+ = O

<« C (® localhost:8080/Pss02/login... £ A ¥ m - O

Please sign in

Bad credentials

Username

Password

Figure 2-7. Unsuccessful login message

If we enter the right username and password, we will get the “Welcome
to Spring Security 6” message as shown in Figure 2-8.

@ O [Welcometo Spring Security ¢ X -+ = O X

<IN @ (@ localhost:8080/Pss02/2continue 2 A ¥ m - o

Welcome to Spring Security 6 authentication example!

You are an authenticated user!

Figure 2-8. Successful login message

39

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Problem

What is Thymeleaf and when to use it?

Solution

Spring Security integrates seamlessly with Thymeleaf, a popular

Java template engine for rendering web pages. Together, they offer a
straightforward way to add security-based conditions directly in HTML
templates, enabling control over what content users can view or interact
with based on their roles and authentication status.

Using Spring Security with Thymeleaf makes it simple to secure your
web application’s views with minimal configuration while keeping code
clean and maintainable.

Benefits of using Thymeleaf with Spring Security

o Declarative Security: Define visibility based on roles
and authentication status directly in the template.

o Readability: Keeps security logic clear and within the
view layer.

e Seamless Integration: Using thymeleaf-extras-
springsecurity6, you can handle secure URLs, user
information, and content visibility without extra
backend code.

Thymeleaf security expressions include
o isAuthenticated(): Checks if a user is logged in
e isAnonymous(): Checks if a user is not logged in

¢ hasRole(‘ROLE_NAME’): Checks if a user has a
specific role

40

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

e hasAuthority(‘authority’): Equivalent to hasRole but
more generic, allowing granular authorities

o principal: Accesses the authenticated user’s details
(e.g., principal.username)

Spring Security provides an extra library for Thymeleaf integration,
called thymeleaf-extras-springsecurity6, if you are using Spring Security
v6, or check the version that matches your Spring Security.

Problem

How to add Thymeleaf dependency to your pom.xml if you're
using Maven?

Solution

<dependency>
<groupld>org.thymeleaf.extras</groupIld>
<artifactId>thymeleaf-extras-springsecurity6</artifactId>
<version>3.1.1.RELEASE</version>

</dependency>

Problem

How to add Thymeleaf and Spring Security attributes?

Solution

Here are some of the most useful attributes for managing security in
Thymeleaf templates:

41

CHAPTER 2

JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

sec:authorize="expression”: Controls visibility based
on an expression. Content is rendered only if the
expression evaluates to true.

<!-- Only visible to authenticated users -->

<div sec:authorize="isAuthenticated()">
Welcome, <span sec:authentication=
"name">User!

</div>

<!-- Only visible to users with ROLE_ADMIN -->
<div sec:authorize="hasRole('ROLE_ADMIN')">
Admin Section
</div>
sec:authentication="property": Displays information
about the authenticated user.

<!-- Display the current user's username -->

Username
sec:authorize="isAnonymous()": Renders content only if
the user is not logged in (anonymous).

<!-- Show login link to unauthenticated users -->
<a sec:authorize="isAnonymous()" href="/
login">Login

Problem

What are JSP tags and when to use them?

42

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Solution

Spring Security provides a set of JSP tags to make it easier to manage
and control security within JSP pages. These tags allow you to show or
hide content based on the user’s authentication status, roles, and other
security-related conditions.

Using these tags in JSP makes it easy to handle user permissions and
roles directly in the view layer without extensive Java code, helping keep
your application secure and maintainable.

Problem

What are the most commonly used Spring Security JSP tags?

Solution

e Authentication Tags

<sec:authentication>: Displays information about the
current authentication.

<sec:authentication property="name" /> <!-- Displays
the username -->

e Access Control Tags

<sec:authorize access="expression">...</sec:authorize>:
Restricts access to parts of a ISP page based on
security expressions.
<sec:authorize access="hasRole('ADMIN')">
<!-- Only users with the 'ADMIN' role can see this
content -->
<p>Welcome, Admin!</p>

43

CHAPTER 2

44

JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

</sec:authorize>

<sec:authorize ifAllGranted="roles"

ifAnyGranted="roles" ifNotGranted="roles">...

</sec:authorize>: Controls content visibility based

on roles.

<sec:authorize ifAllGranted="ROLE_USER, ROLE_ADMIN">
<!-- Content for users with both USER and ADMIN
roles -->

</sec:authorize>

<sec:authorize ifAnyGranted="ROLE_USER, ROLE_GUEST">
<!-- Content for users with either USER or GUEST
roles -->

</sec:authorize>

<sec:authorize ifNotGranted="ROLE_ADMIN">
<!-- Content for users who do NOT have the ADMIN
role -->

</sec:authorize>

Logout Tag

<sec:logout />: Generates a link to log out the
current user.
<a href="<sec:logout />">Logout

URL Tag

<sec:url value="path" />: Generates a secure URL
(useful for adding CSRF tokens to URLs in forms).
<form action="<sec:url value='/processForm"' />"
method="post">

<!-- form content here -->
</form>

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF
We will add the following lines to our code to adopt the JSP tags:

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-taglibs</artifactId>
<version>6.1.5</version>

</dependency>

The updated project file pom.xml with Spring Security 6 and all tools
described is shown in Listing 2-4.

Listing 2-4. pom.xml file

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.apress</groupId>
<artifactId>Psso02</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Pss02</name>
<packaging>war</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>
<maven.compiler.target>11</maven.compiler.target>
<maven.compiler.source>11</maven. compiler.source>
<junit.version>5.9.2</junit.version>

</properties>

45

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

<dependencies>
<dependency>

<groupld>org.springframework.security</qgroupId>
<artifactId>spring-security-core</artifactId>
<version>6.3.2</version>

</dependency>

<dependency>
<groupId>org.springframework.security</qroupId>
<artifactId>spring-security-config</artifactId>
<version>6.1.4</version>

</dependency>

<dependency>
<groupId>orq.springframework.security</qgroupId>
<artifactId>spring-security-web</artifactId>
<version>6.1.0</version>

</dependency>

<dependency>
<groupld>org.springframework.security</qgroupId>
<artifactId>spring-security-taglibs</artifactId>
<version>6.1.5</version>

</dependency>

<dependency>
<groupld>org.springframework</qroupId>
<artifactId>spring-webmvc</artifactId>
<version>6.1.13</version>

</dependency>

<dependency>
<groupId>jakarta.servlet</qroupId>
<artifactId>jakarta.servlet-api</artifactId>
<version>5.0.0</version>

46

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>${junit.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>${junit.version}</version>
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</qgroupId>
<artifactId>maven-war-plugin</artifactId>
<version>3.3.2</version>
</plugin>
</plugins>
</build>
</project>

Problem

How to configure and customize Spring Security v6 to our project?

47

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Solution

To activate Spring Security Web project configuration in your Maven
Web Application, you need to configure a particular servlet filter that will
take care of preprocessing and postprocessing the requests, as well as
managing the required security constraints.

We will start creating a Java package where all your Java classes will be
located:

e com.apress.pss02.springsecurity.configuration

Then you need to define the Java classes needed for your example
under package configuration:

e SecurityConfiguration
e Applnitializer
o SpringSecurityInitializer

In this example, we will learn how to enable Spring Security v6
using the annotation named “@EnableWebSecurity” without using the
WebSecurityConfigurerAdapter class, but instead building this example on
top of the spring webmvc hibernate integration example.

We will create a new Java Spring Security configuration class named
“SecurityConfiguration” which will utilize “@EnableWebSecurity”
annotation, to help us to configure the Spring Security-related beans such
as WebSecurityConfigurer and SecurityFilterChain.

Problem

How do we add security configuration to a Java Web Application?

48

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Solution

In this new Spring Security v6 “SecurityConfiguration” Java class, shown
in Listing 2-5, we will need to

1. Create two demo in-memory users named “user”
and “admin” which will be authorized to access a
secure resource of the project.

2. Use BCryptPasswordEncoder to encode the user
passwords for added security.

3. Configure the SecurityFilterChain bean with the
HTTP-based method login to the application as
basic-auth.

Listing 2-5. SecurityConfiguration Java class
package com.apress.pss02.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.security.core.userdetails.
UserDetailsService;

import org.springframework.security.crypto.bcrypt.
BCryptPasswordEncoder;

import org.springframework.security.crypto.password.
PasswordEncoder;

49

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

import org.springframework.security.provisioning.
InMemoryUserDetailsManager;
import org.springframework.security.web.SecurityFilterChain;

import static org.springframework.security.config.
Customizer.withDefaults;

@Configuration
@EnablelWebSecurity

public class SecurityConfiguration {

50

@Bean
public SecurityFilterChain filterChaini(HttpSecurity http)
throws Exception {
http
.authorizeHttpRequests((authorize) -> authorize
.anyRequest().authenticated()

)
.formLogin(withDefaults());

return http.build();
}

@Bean
public UserDetailsService userDetailsService(){

UserDetails user = User.builder()
.username("user")
.password(passwordEncoder().
encode("userpassw"))
.roles("USER")

.build();

UserDetails admin = User.builder()
.username("admin™)

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

.password(passwordEncoder () .encode("adminpassw"))
.roles("ADMIN")
.build();

return new InMemoryUserDetailsManager(user, admin);

}

@Bean
public static PasswordEncoder passwordEncoder(){
return new BCryptPasswordEncoder();

Problem

How do we initialize Spring Security to our Java classes?

Solution

As Spring Security is implemented using DelegatingFilterProxy,

our next step will be to create a new Java class named
“SpringSecurityInitializer” used for initializing Spring Security using
the AbstractSecurityWebApplicationInitializer class so that Spring will

o Detect the instance of this class during

application startup

o Register the DelegatingFilterProxy to use the
springSecurityFilterChain before any other
registered filter

o Register a ContextLoaderListener

51

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

The “SpringSecurityInitializer” Java class is shown in Listing 2-6

Listing 2-6. SpringSecuritylnitializer Java class
package com.apress.pss02.configuration;

import org.springframework.security.web.context.
AbstractSecurityWebApplicationInitializer;

public class SpringSecurityInitializer extends
AbstractSecurityWebApplicationInitializer {

//no code needed

We will next need to include our SecurityConfiguration.class to the
new “AppInitializer” Java class, used to initialize the HibernateConfig,
SecurityConfiguration, and WebMvcConfig classes, as shown in
Listing 2-7.

Listing 2-7. Applnitializer Java class
package com.apress.pss02.configuration;

import jakarta.servlet.ServletContext;
import org.springframework.security.access.SecurityConfig;

import org.springframework.web.WebApplicationInitializer;
import org.springframework.web.context.ContextlLoaderListener;
import org.springframework.web.context.support.
AnnotationConfigWebApplicationContext;

import org.springframework.web.filter.DelegatingFilterProxy;

public class AppInitializer implements
WebApplicationInitializer {

@0verride
public void onStartup(ServletContext sc) {

52

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

AnnotationConfighebApplicationContext root = new
AnnotationConfigWebApplicationContext();
root.register(SecurityConfiguration.class);

sc.addListener(new ContextlLoaderListener(root));

sc.addFilter("securityFilter", new DelegatingFilter
Proxy("springSecurityFilterChain"))
.addMappingForUrlPatterns(null, false, "/*");

Finally, we will update the index.jsp page as shown in Listing 2-8.
Listing 2-8. index.jsp

<%@ taglib prefix="sec" uri="http://www.springframework.org/
security/tags" %>

<%@ page contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" %>

<!DOCTYPE html>

<html>

<head>
<title>Welcome to Spring Security 6 authentication
example!</title>

</head>

<body>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<sec:authorize access="isAuthenticated()">
<h2>You are an authenticated user: <sec:authentication
property="name"/></h2>

</sec:authorize>

</body>
</html>

53

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

The index.jsp page, using the JSP tags configured, will display the
username of the authenticated user.

The structure of your new Spring Security v6 project should look like
Figure 2-9.

= [B) Psso02 v Version control v

Project v

v [3Pss02
> [.idea
v @src
v [main
N IEVE!
v [com.apress.pss02.configuration
Applnitializer
SecurityConfiguration

SpringSecuritylnitializer
v [webapp

v [WEB-INF
<i@ web.xml
ISP index.jsp
> [Dtarget
3 mvnw
= mvnw.cmd

pom.xml

> [h External Libraries

> = Scratches and Consoles

Figure 2-9. New Spring Security v6 project structure

Next, build and run the Spring Security v6 project using Tomcat v11 as
shown in Figure 2-10.

54

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

Y | Run/Debug Configurations

+ — 0 R
Name: Tomcat 11.0.0 Store as pi
v < Tomcat Server — -

¥ Tomcat 11.0.0
Server Deployment Logs Code Coverage Startup/Connection

Application server: Tomcat 11.0.0

Open browser

o After launch @ Default v with JavaScript debugger

URL: http://localhost:8080/Pss02/

VM options:

On 'Update’ action: Restart server v ~ Show dialog

On frame deactivation: Do nothing

JRE:

Tomcat Server Settings
HTTP port: 8080 Deploy applications configured in Tomcat instan
HTTPs port: Preserve sessions across restarts and redeploy
JMX port:

AJP port:

Figure 2-10. Project running configuration using Tomcat v11

You can now build the project, deploy the JAR file, start the application
running on the stand-alone Tomcat Server v11, and deploy the JAR file
automatically.

Your application is deployed successfully; the web browser will open
automatically the following link: http://localhost:8080/Pss02/login/.

Now, if you access with the wrong credentials, you will receive an error
message like the one in Figure 2-11.

55

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

© O () Pleasesignin x + _

<« C @ localhost8080/Pss02/login.. £ A ¢ @ - §

Please sign in

Bad credentials

Username

Password

Figure 2-11. Accessing with wrong login credentials

As you can see, Spring Security will directly produce the login error
and remind the user that the credentials provided are not correct.

If you next provide the right user or admin credentials, you will receive
the content defined in the index. jsp page, which identifies if an admin
or user credential is provided and displays a welcome message with the
username authenticated.

In our case, we will, for example, authenticate using the admin
credential as shown in Figure 2-12.

56

CHAPTER 2 JAVA WEB APPLICATION WITH SPRING SECURITY, JSP TAGS, AND THYMELEAF

© 0O (3 Welcome to Spring Security ¢ X =~ - (] X

& C @ localhost:8080/Pss02/ e A % M o O

A

Welcome to Spring Security 6 authentication example!

You are an authenticated user: admin

Figure 2-12. Welcome page for admin authenticated user

Great! You have built your first Spring Security v6 web application.
We will dive deeply into how all this works internally when we look at the
architecture of Spring Security.

Summary

We introduced all the tools needed to create the environment to develop
Spring Security Java Web Applications, such as JSP tags and Thymeleaf.

You learned how to install and configure all the tools needed for these
examples, and you should have a good idea of what is needed to build a
Spring Security v6 project. You learned how to build your first Java Web
Application project without Spring Security, and then you added the
security dependencies to update it as a Spring Security v6 application.

In the next chapter, we will learn how to develop a Spring Security Java
Web Application using Spring Boot 3 Initializr.

57

CHAPTER 3

Java Web Application
and Spring Boot 3
Initializr

In this chapter, we will learn how to build a Java Web Application using
Spring Security 6 in Spring Boot 3. You will see in detail the inner work of
the security filter chain and the different metadata options at your disposal
to define security constraints in your application.

You will also learn how to build a custom login form.

Let’s build your Java Web Application using Spring Security 6 in Spring
Boot 3, and please make sure you're using Java 17+, as the baseline for
Spring Boot 3 and Spring Security 6 is now Java 17. We will use Java v23 in
this demo.

Let’s build our project with the Spring Boot 3 Initializr.

As a first step, you will create a new Spring project named pss01_
Security using the Spring Initializr web tool at https://start.spring.io/
as shown in Figure 3-1.

For our example, we chose Java 23, Maven, and JAR, with Spring
Security and Web as dependencies.

© Massimo Nardone 2025 59
M. Nardone, Spring Security 6 Recipes, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1297-2_3

https://doi.org/10.1007/979-8-8688-1297-2_3#DOI
https://start.spring.io/

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

R #
&) spring initializr

O Gradie-Grooy O Grade - Kotiin @22 OkKotin O Groowy

© Meve spring Security [EE
Highly customizabl d framework for Spring applications.
Spring Boot
O 340(SNAPSHOT) O 340(RC1) O 336(SNAPSHOT) @ Spring Web m
O 3212(sNaPsHOT) O 3211 Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat as the

default embedded container.
Project Metadata

Group com.apress

Atifact pss01_Security

Name pss01_Security

Description Demo project for Spring Boot and spring Security v6

Package name com apress.pss01_Security

Packagng @ Jar O War

Java @22 Q21 O17

o) I GENERATE CTRL+ <

[xeuone crmseace | [suae.. |

Figure 3-1. New Spring project using Spring Initializr

Once the project is generated, unzip the file and open the project with
your IDE tool in use.

Our new project files and the pss01_Security project structure are
shown in Figure 3-2.

60

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

= [EBS pssO1_security ¥ Version control ¥

Project v

v [pssOi_security
> [.idea
v @src
v [main

IEVE!

v [com.apress.pss01_security

v [configuration

CustomAuthenticationFailureHandler

SecurityConfiguration
v [controller
UserController

& PssO1SecurityApplication
v [2resources

v [templates
authenticated.html
login.html
welcome.html

o application.properties
> [Dtest

> [Dtarget
HELP.md
63 mvnw
= mvnw.cmd
pom.xml
B pss01_security.iml

> (h External Libraries

>

= Scratches and Consoles

Figure 3-2. New Spring project structure

61

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

If, like in our example, Spring Security is on the classpath, Spring Boot
automatically secures all HTTP endpoints with “basic” authentication,
generating a security password to be used as a credential with the “user” as
the username, as shown in Figure 3-3.

Figure 3-3. Running the new Spring project

This means that now if we go ahead and type localhost:8080, Spring
will require us to provide the newly created username “user” and password
“718efb71-4e73-4996-92fc-ed717afc2b8e” to log in, as shown in Figure 3-4.

© O () Please signin X 4+ = 0O X

< > O (D localhost:8080/login 2 Y = - 5

Please sign in

user

Figure 3-4. Secure Spring application with login page

62

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Since our web application is based on Spring MVC, we need to
configure Spring MVC and set up view controllers to expose the HTML
templates we will create later.

Problem

How do we create a Controller Java class?

Solution

Let’s create a simple controller to get a simple “Welcome to Spring Security
6” message when entering the right login information, as shown in

Listing 3-1.

Listing 3-1. A simple UserController Java class

package com.apress.pss01 Security;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController

public class UserController {
@GetMapping ("/welcome™)

public String welcome() {
return "Welcome to Spring Security 6";

If we enter the right username and password, we will get the “Welcome
to Spring Security 6” message as shown in Figure 3-5.

63

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

@ O D localho: X -+ - O %

< O (D localhost:8080/welcome o7 x= - O

Welcome to Spring Security 6

Figure 3-5. Successful login message

Let’s add now some more logic to our code.

First of all, let’s have a look at the new pom.xml file generated when we
created the new Spring Boot 3 and Spring Security 6 project, as shown in
Listing 3-2.

Listing 3-2. pom.xml file

<?xml version="1.0" encoding="UTF-8"2?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.5</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.apress</qgroupId>
<artifactId>psso1_Security</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>pss01_Security</name>

64

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

<description>Demo project for Spring Boot and spring

Security vé6</description>
<url/>
<licenses>
<license/>
</licenses>
<developers>
<developer/>
</developers>
<scm>
<connection/>
<developerConnection/>
<tag/>
<url/>
</scm>
<properties>

<java.version>23</java.version>

</properties>
<dependencies>
<dependency>

<groupId>org.springframework.boot</qroupId>

<artifactId>spring-boot-starter-security</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

<groupld>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-test</artifactId>

<scope>test</scope>

65

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

</dependency>
<dependency>
<groupld>org.springframework.security</qgroupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>orq.springframework.boot</qroupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

</project>

As you can see, we use Thymeleaf which is a Java template engine that
can be used for processing and creating HTML, XML, CSS, JavaScript, and
plain text.

To activate Spring Security Web project configuration in your Maven
Web Application, you need to configure a particular servlet filter that will
take care of preprocessing and postprocessing the requests, as well as
managing the required security constraints.

Problem

How do we create admin users to access some authenticated resource?

66

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Solution

Let’s define two users in our project, but only the “Admin” with the
role “Admin” will be authorized to access the secured resource called
“authenticated.html” in our project.

As a first step, please make sure that all the tools and directories are
created as described previously.

Next, create the needed simple HTML files under a new project
directory called src/main/resources/templates/.

Your project will utilize two html pages:

e welcome.html, which is the starting welcome web page
of the project

e authenticated.html, which is the admin web page to
access when the user successfully logs in

The welcome.html page is shown in Listing 3-3.

Listing 3-3. welcome.html

<IDOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=150-8859-1">
<title>Spring Security 6 authentication example!</title>
</head>
<body>

<div th:if="${param.error}">
Invalid username and password.
</div>

67

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

<div th:if="${param.logout}">
You have been logged out.
</div>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<p>Click <a th:href="@{/authenticated}">here to get
authenticated!</p>

</body>
</html>

The welcome.html page will only display a welcoming message and
provide the link to the authenticated page, /authenticated.
Let’s now create the authenticated.html page as shown in Listing 3-4.

Listing 3-4. authenticated.html

<IDOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org"
xmlns:sec="https://www.thymeleaf.org/thymeleaf-extras-
springsecurity6">
<head>
<title>Spring Security 6 authentication example</title>
</head>
<body>
<h2>Welcome to Spring Security 6 authentication example!</h2>
<h2 th:inline="text">You are an authenticated user: thymeleaf</
span>!</h2>

<p>click <a th:href="@{/logout}">here to logout!!</p>

</body>
</html>

68

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Next, you need to define the Java classes needed for your example.
Under the package controller:

o UserController
Under the package configuration:
o SecurityConfiguration

Let’s create the two Java packages where your Java classes will be
located:

o package com.apress.pss0l1_security.configuration

o package com.apress.pss01_security.controller;

Problem

In Spring Security, how is the UserController Java class built?

Solution

Let’s create the UserController Java class under the package com.apress.
pss01 security.controller, as shown in Listing 3-5.

Listing 3-5. UserController Java class
package com.apress.pssOl security.controller;

import org.springframework.stereotype.Controller;
import org.springframework.ui.ModelMap;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class UserController {

69

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

@GetMapping("/")
public String homePage() {
return "welcome";

}

@GetMapping("/welcome™)
public String welcomePage() {
return "welcome";

}

@GetMapping ("/authenticated")
public String AuthenticatedPage() {
return "authenticated";

}

@GetMapping ("/logout™)
public String logoutPage() {
return "redirect:/welcome";

}

Note that, for the purposes of web security, it doesn’t really matter
if you use a Spring MVC controller, like you do here, or if you use simple
servlets, as you did in Chapter 3, or for that matter, if you use any other
servlet-based framework for developing your application. Remember that,
at the core, the web part of Spring Security basically attaches itself to the
standard Java servlet filter architecture. So if your application uses servlets
and filters, you can leverage Spring Security’s web support.

Problem

What are the most common HTTP mapping annotations based on
@RequestMapping?

70

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Solution

Since Spring Framework 4.3, there are some new HTTP mapping
annotations based on @RequestMapping:

o (@GetMapping

e @PostMapping

e @PutMapping

o (@eleteMapping
e @PatchMapping

For instance, @GetMapping is a specialized version of the @RequestMapping
annotation, which will act as a shortcut for @RequestMapping(method =
RequestMethod.GET). @GetMapping annotates methods to handle the HTTP
GET requests matched with a certain given URI expression.

As we all developers well know, MVC applications aren't service
oriented, which means that there will be a view resolver which will render
the final views based on data received from the controller.

RESTful applications are designed to be service oriented and return
raw data, which is generally JSON/XML, and since these applications don't
do any view rendering, there are no view resolvers, and the controller is
typically expected to send data directly via the HTTP response.

The UserController Java class simply, via Spring MVC, will

1. Intercept any incoming request

2. Convert the payload of the request to the internal
structure of the data

3. Send the data to Model for any needed further
processing

4. Get processed data from the Model, and advance it
to the View for rendering

71

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

So, for instance, in our example, the “UserController Java class” will
1. Return aview named “welcome.”

2. The view resolver will try to resolve a page called
“welcome.html” in the templates folder.

Problem

How does the “SecurityConfiguration” Java class work?

Solution

We already explained previously how to enable Spring Security v6
using the annotation named “@EnableWebSecurity” without using
the WebSecurityConfigurerAdapter class and also introduced in
that chapter the Java Spring Security configuration class named
“SecurityConfiguration” which will utilize “@EnableWebSecurity”
annotation, to help us to configure the Spring Security-related beans, such
as WebSecurityConfigurer and SecurityFilterChain.

Here is what exactly our “SecurityConfiguration” will do in this example:

¢ (Create two demo in-memory users via
“UserDetailsService” named “user” and “admin”
which will be authorized to access a secure resource
of the project so that only user “Admin” can access the
secured “authenticated” web resource.

e Use BCryptPasswordEncoder to encode the user
passwords for added security.

o Configure the SecurityFilterChain bean with the
username/password basic authentication mechanism
to authenticate the users.

72

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Listing 3-6 shows the SecurityConfiguration Java class

Listing 3-6. SecurityConfiguration.java
package com.apress.pss01_security.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.Customizer;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.security.core.userdetails.
UserDetailsService;

import org.springframework.security.crypto.bcrypt.
BCryptPasswordEncoder;

import org.springframework.security.crypto.password.
PasswordEncoder;

import org.springframework.security.provisioning.
InMemoryUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;

@Configuration
@EnableWebSecurity

public class SecurityConfiguration {

@Bean
public SecurityFilterChain filterChaini(HttpSecurity http)
throws Exception {

http

73

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

.authorizeHttpRequests((authorize) -> authorize
.requestMatchers("/", "/welcome").
permitAll()
.requestMatchers("/authenticated").
hasRole("ADMIN")
.anyRequest().denyAll()

)

.csrf(Customizer.withDefaults())
.formLogin(withDefaults())

.logout((logout) -> logout
.logoutSuccessUrl("/welcome")
.invalidateHttpSession(true)
.permitAll()

);
return http.build();
}

@Bean
public UserDetailsService userDetailsService(){

UserDetails user = User.builder()
.username("user"
.password(passwordEncoder().
encode("userpassw"))
.roles("USER")

.build();

UserDetails admin = User.builder()
.username("admin™)
.password(passwordEncoder () .encode("adminpassw"))
.roles("ADMIN")
.build();

74

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

return new InMemoryUserDetailsManager(user, admin);

}

@Bean
public static PasswordEncoder passwordEncoder(){
return new BCryptPasswordEncoder();

Spring Security allows us to model our authorization at the request
level. In our example, we are saying that page /welcome is permitted to
all pages under /admin require one authority while all other pages simply
require authentication.

By default, Spring Security requires that every request be
authenticated. That said, any time you use an HttpSecurity instance, it’s
necessary to declare your authorization rules.

Whenever you have an HttpSecurity instance, you should at least do

http
.authorizeHttpRequests((authorize) -> authorize
.anyRequest().authenticated()

)

So in our case:
e “/”and “/welcome” are permitted to all

e “/authenticated” page can only be accessed
when presenting a usr with “role ” Admin via the
.hasRole(“ADMIN") declaration

e .logout((logout) ->logout is permitted to all and in case
it is utilized it will request the “welcome.html” page

75

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

All the info about http-requests can be found at spring doc web page:

https://docs.spring.io/spring-security/reference/servlet/
authorization/authorize-http-requests.html

Problem

What are the special URLs in Spring Security?

Solution

As we explained so far, you can see that Spring Security’s support for

web security defines a few preconfigured URLSs for you to use in your
application. These URLs get special treatment in the framework. The main
ones are the following:

o /login: This is the URL that Spring Security uses to
show the login form for the application. The framework
will redirect to this URL when an authentication is
needed but doesn’t exist yet.

o /logout: This URL is used by the framework to log
out the currently logged-in user, invalidating the
corresponding session and SecurityContext.

From the previous URLs, the first thing that comes to mind is how to
configure your own login form in the application and, in general, how to
customize the login process instead of using the default one. That is what
we’ll do next.

Problem

What kind of HTTP filters can be used with Spring Security, and what are

the most common?

76

https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html
https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Solution

Spring Security utilizes a lot of filters. In the case of the HTTP request filter,

it will be used to

Intercept the request

Detect authentication (or absence of)
Redirect to authentication entry point
Pass the request to authorization service

Send the request to the servlet or throw security
exception

The most important Spring Security v6 filters are

BasicAuthenticationFilter: If it finds a Basic Auth HTTP
Header on the request, it tries to authenticate the user
with the header’s username and password.

UsernamePasswordAuthenticationFilter: If it finds a
username/password request parameter/POST body, it
tries to authenticate the user with those values.

DefaultLoginPageGeneratingFilter: It generates a
default login page when enabling Spring Security
unless we explicitly disable that feature.

DefaultLogoutPageGeneratingFilter: It generates a
logout page for us unless we explicitly disable that
feature.

FilterSecurityInterceptor: It does our authorization.

Let’s learn more about some of the Spring Security v6 filters when
using the URL /login.

77

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Let’s see what happens when incorrect or correct credentials are
provided when logging in. When the browser is redirecting and asks for the
URL /login, the following occurs:

o The processis the same as for the first request until it
reaches the DefaultLoginPageGeneratingFilter. At this
point, the filter detects that the request is for the URL
/1login and writes the login form’s HTML data directly in
the response object. Then the response is rendered.

Now try to log in with incorrect credentials.
Let’s follow the request through the framework to see what happens:

o Inthelogin form, type the username admin and the
password adminpassw.

¢« When the form is submitted, the filters are
activated again in the same order as before. This
time, however, when the request arrives at the
UsernamePasswordAuthenticationFilter, the filter
checks whether the request is for the URL /login and
sees that this is indeed the case. The filter extracts the
username and password authentication information
from the HTTP request parameters username and
password, respectively. With this information, it
creates the UsernamePasswordAuthenticationToken
Authentication object, which then sends it to the
AuthenticationManager (or more exactly, its default
implementation, ProviderManager) for authentication.

o TheDaoAuthenticationProvider gets called from
the ProviderManager with the Authentication
object. The DaocAuthenticationProvider is an
implementation of AuthenticationProvider, which
uses a strategy of UserDetailsService to retrieve the

78

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

users from whichever storage they live in. With the
configuration you currently have, it will try to find a
user with the username of user using the configured
InMemoryUserDetailsManager (the implementation
of UserDetailsService that maintains an in-memory
user storage in a java.util.Map). Because there is

no user with this username, the provider throws a
UsernameNotFoundException exception.

The provider itself catches this exception and converts
itinto a BadCredentialsException to hide the fact
that there is no such user in the application; instead,

it treats the error as a common username-password

combination error.

The exception is caught by the
UsernamePasswordAuthenticationFilter. This

filter delegates to an instance of an implementation

of AuthenticationFailureHandler, which in

turn decides to redirect the response to the URL
/login?error. This way, the login form is shown again
in the browser with an error message displayed.

You can see all the documentation on filters at https://docs.spring.
io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.
html#servlet-filters-review.

Restart the application, go back to the URL http:/localhost:8080/
welcome, which will trigger the login page, and type admin as the username

and adminpassw as the password in the form. Then click the Login button.

The request follows the same filter journey as before.
This time, InMemoryUserDetailsManager finds a
user with the requested username and returns that
to DaoAuthenticationProvider, which creates a
successful Authentication object.

79

https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review
https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review
https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

e After successful authentication, the
UsernamePasswordAuthenticationFilter
delegates to an instance of
SavedRequestAwareAuthenticationSuccessHandler,
which looks for the original requested URL (/
authenticated) in the session and redirects the
response to that URL.

When http://localhost:8080/authenticated is requested, the
request works its way through the filter chain as in the previous cases. This
time, though, you already have a fully authenticated entity in the system.
The request arrives in the FilterSecurityInterceptor.

e TheFilterSecurityInterceptor receives an
access request to the URL / authenticated. Then it
recovers the necessary credentials to access that URL
(ROLE_ADMIN).

e TheAffirmativeBased access-decision manager gets
called and in turn calls the RoleVoter voter. The voter
evaluates the list of authorities of the authenticated
entity and compares them with the required credentials
to access the resource. Because the voter finds a match
(ROLE_ADMIN is in both the Authentication authorities
and the resource’s config attributes), it votes with an
ACCESS_GRANTED vote.

o TheFilterSecurityInterceptor forwards the request
to the next element in the request-handling chain,
which in this case is Spring’s DispatcherServlet.

e Therequest gets to the AdminController, which simply
returns the authenticated page.

80

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Problem

How do we build a customized login form in Spring Security?

Solution

Since v5, when you use Spring Security, the user authentication request to
your application is done via the http.authorizeRequests() method.

When you configure the http element, via the http.
authorizeHttpRequests () method, as you did before, Spring
Security takes care of setting up a default login and logout process
for you, including a login URL, login form, default URL after login,
and some other options. Basically, when Spring Security’s context
starts to load up, it will find that there is no custom login page URL
configured, so it will assume the default one and create a new instance
of DefaultLoginPageGeneratingFilter that will be added to the filter
chain. As you saw before, this filter is the one that generates the login form
for you.

If you want to configure your own form, you need to do the following
tasks. The first thing is to tell the framework to replace the default handling
with your own. You define the following element as a child of the http.
authorizeRequests() method in the SecurityConfiguration Java file:

formLogin((form) -> form

This element tells Spring Security to change its default login-handling
mechanism on startup. First, the DefaultLoginPageGeneratingFilter will
no longer be instantiated. Let’s try this first configuration out. With the new
configuration in place, restart the application and try to access the URL
http://localhost:8080/ /authenticated.

You get redirected to the URL /login and get a 404 HTTP error because
you haven’t defined any handler for this URL yet. This 404 page is shown in
Figure 3-6.

81

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

@ D Sﬁ localhe X —+ = o X

& G @ localhost:8080/login ¥, o= ,'h

£

%

This page isn't working at the
moment
‘ localhost redirected you too many times.

| « Search the web for localhost

» Try deleting your cookies.

Figure 3-6. Error 404 that appears when defining a new login
handler page

Let’s add a login controller in the UserController as shown in
Listing 3-7.

Listing 3-7. Login controller added to the UserController

@GetMapping("/login")
public String loginPage() {
return "login";

82

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR
Next, add the following line to the SecurityConfiguration file:

formLogin((form) -> form
.loginPage("/login")
.permitAll()

Now create the login.html page from Listing 3-8 in the folder
templates in your application.

Listing 3-8. Custom login.html

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://

www.thymeleaf.org" lang="">
<head>
<title>Spring Security Example </title>
</head>
<body>

<div th:if="${param.logout}">
You have been logged out.
</div>

<h1>Spring Security v6 Custom Login Form</h1>
<h2>Login with Username and Password:</h2>
<form th:action="@{/login}" method="post">

<div th:if="${param.error}">
<p th:text="#{login.error}">Invalid username or
password.</p>

</div>

<div><label> Username : <input type="text" name="username"
required /> </label></div>

83

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

<div><label> Password: <input type="password" name="password"
required /> </label></div>
<div><input type="submit" value="Login"/></div>

</form>

</body>

</html>

In the authenticated.html file, replace the following line:
<p>Click <a th:href="@{/logout}">here to logout!!</p>
with this:

<form th:action="@{/logout}" method="post">
<input type="submit" value="Logout"/>
</form>

If you restart the application and again go to http://localhost:8080/
welcome, you should see the welcome page as shown in Figure 3-7.

r@ D a Spring X -+ = o %

& (G (D localhost:8080/welcome o7 = - BH

Welcome to Spring Security 6 authentication
example!

Click here to get authenticated!

Figure 3-7. Welcome web page

When you click to authenticate, then the application goes to http://
localhost:8080/authenticated; you should see your new login form

84

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

when you get redirected to the /login URL. The form is shown in
Figures 3-8 and 3-9. If you type admin as username and adminpassw as
password, you get access to the authenticated page, as you did before
with the default login form.

@D@Spn’ngx-i- - b0 X

& @] (O localhost:8080/login g o= ﬁ

Spring Security v6 Custom Login
Form

Login with Username and Password:

Username : | |

Password: ‘ |

Login

Figure 3-8. Custom login form

@ im] D Spring Security 6 authentication ¢ X —+ - (] X
& @] (@ localhost:8080/authenticated?continue g o= - M
Welcome to Spring Security 6 authentication example!

You are an authenticated user: admin!

Logout

Figure 3-9. Custom successful login form

Just click “Logout” to log out the current user.

85

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Problem

How do we build a customized error message in our web page?

Solution

If you take a look at the 1login.html, you can see certain names for the
username field, password field, the remember me checkbox, and the
action attribute of the form element.

These are not random names. Spring Security expects the use of these
particular names in order to treat the authentication process correctly.
Also, the form should use POST for sending the information to the server
because this is required by the framework.

The element <form-login> supports many more configuration
options, including changing the default username and password names for
the authentication request parameters.

The <form-login> attributes might include

o always-use-default-target

authentication-details-source-ref

o authentication-failure-handler-ref
e authentication-failure-url

e authentication-success-handler-ref
o default-target-url

o login-page

o login-processing-url

e password-parameter

U] username-parameter

86

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

e authentication-success-forward-url
e authentication-failure-forward-url
Give this attribute the value /login. Then, in your login.html, add the
content from Listing 3-9 just after the <body> tag.
Listing 3-9. Snippet showing an error in the login.jsp

<div th:if="${param.error}">

<p th:text="#{login.error}">Invalid username or password.</p>
</div>

If you now restart the application and try to access the URL http://
localhost:8080/ /authenticated and use an incorrect username and
password, you will get the login page again, but with the error message
“Invalid username and password” shown at the top. Look at Figure 3-10 for
the page you should be getting.

@ im] [Spring Security Example x == - 0O X

< O (D localhost:8080/login g = - B

Invalid username or password

Spring Security v6 Custom Login Form

Login with Username and Password:

Username : | |
Password: | J

[Togin]

Figure 3-10. A custom error shown in the custom form

87

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Note that this URL could be a different URL altogether, not related to
the login URL at all. But the common pattern is to allow the user another
attempt at logging in, showing them any errors.

e authentication-success-handler-ref: Reference
to an AuthenticationSuccessHandler bean
in the Spring application context. This bean
is called upon successful authentication and
should handle the next step after authentication,
usually deciding the redirect destination in the
application. A current implementation in the form of
SavedRequestAwareAuthenticationSuccessHandler
takes care of redirecting the logged-in user to the
original requested URL after successful authentication.

e authentication-failure-handler-ref: Reference
to an AuthenticationFailureHandler bean
in the Spring application context. It is used to
handle failed authentication requests. When an
authentication fails, this handler gets called. A
standard behavior for this handler is to present
the login screen again or return a 401 HTTP status
error. This behavior is provided by the concrete class
SimpleUrlAuthenticationFailureHandler.

When authenticating a Spring Security application, there are three
different interfaces to consider:

e Authentication Success Handler
o Authentication Failure Handler

e Access Denied Handler

88

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Let’s develop a simple example implementation of the
AuthenticationFailureHandler interface. It will simply return
a 500 status code when failing to authenticate. Create the class
CustomAuthenticationFailureHandler from Listing 3-10.

Listing 3-10. AuthenticationFailureHandler implementation for
ServerErrorFailureHandler

package com.apress.pss01 security.configuration;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import org.springframework.security.core.
AuthenticationException;

import org.springframework.security.web.authentication.
AuthenticationFailureHandler;

import java.io.IOException;

public class CustomAuthenticationFailureHandler implements
AuthenticationFailureHandler {

@0verride
public void onAuthenticationFailure(HttpServlet
Request request, HttpServletResponse response,
AuthenticationException exception)
throws IOException {
response.sendError (500);

Then, add to the SecurityConfiguration class file the following

.formLogin((form) -> form
.loginPage("/login")
.defaultSuccessUrl("/authenticated")

89

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

.permitAll()
.failureHandler (authenticationFailureHandler())
And the new bean:
@Bean

public AuthenticationFailureHandler
authenticationFailureHandler() {
return new CustomAuthenticationFailureHandler();

Restart the application, go to http://localhost:8080/authenticated,
use a random username and password, and click the Submit button. You
should get a 500 error in the browser.

Finally, in Listing 3-11, you see the entire “SecurityConfiguration”
Java class.

Listing 3-11. SecurityConfiguration.java
package com.apress.pss01_security.configuration;

import org.springframework.context.MessageSource;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.
ReloadableResourceBundleMessageSource;

import org.springframework.security.config.Customizer;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.config.http.
SessionCreationPolicy;

import org.springframework.security.core.userdetails.User;

90

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.security.core.userdetails.
UserDetailsService;

import org.springframework.security.crypto.bcrypt.
BCryptPasswordEncoder;

import org.springframework.security.crypto.password.
PasswordEncoder;

import org.springframework.security.provisioning.
InMemoryUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;
import org.springframework.security.web.access.
AccessDeniedHandler;

import org.springframework.security.web.authentication.
AuthenticationFailureHandler;

import org.springframework.security.web.authentication.
AuthenticationSuccessHandler;

import org.springframework.security.web.authentication.www.
DigestAuthenticationEntryPoint;

import org.springframework.security.web.authentication.www.
DigestAuthenticationFilter;

import org.springframework.security.web.session.
HttpSessionEventPublisher;

import static org.springframework.security.config.
Customizer.withDefaults;

@Configuration
@EnableWebSecurity

public class SecurityConfiguration {

91

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

@Bean

public SecurityFilterChain filterChaini(HttpSecurity http)

throws Exception {

http
.authorizeHttpRequests((authorize) -> authorize

.requestMatchers("/", "/welcome").
permitAll()
.requestMatchers("/authenticated").
hasRole("ADMIN")
.requestMatchers("/customError").
permitAll()
.anyRequest().denyAll()

)

.csrf(withDefaults())
.formLogin(withDefaults())

.sessionManagement(session -> session
.sessionCreationPolicy(SessionCreation
Policy.ALWAYS)

.maximumSessions(1))

// using customized login html page

.formLogin((form) -> form
.loginPage("/login")
.defaultSuccessUrl("/authenticated")
.failureUrl("/login?error=true")
.failureHandler (authenticationFailure
Handler())
.permitAll()

)
.logout((logout) -> logout

92

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

.logoutSuccessUrl("/welcome")
.deleteCookies("JSESSIONID")
.invalidateHttpSession(true)
.permitAll()

)5
return http.build();
}

@Bean

public MessageSource messageSource() {
ReloadableResourceBundleMessageSource messageSource =
new ReloadableResourceBundleMessageSource();
messageSource.setBasename("classpath:messages”);
messageSource.setDefaultEncoding("UTF-8");
return messageSource;

}

@Bean
public AuthenticationFailureHandler
authenticationFailureHandler() {

return new CustomAuthenticationFailureHandler();

}

@Bean
public HttpSessionEventPublisher
httpSessionEventPublisher() {

return new HttpSessionEventPublisher();

}

@Bean
public UserDetailsService userDetailsService(){

UserDetails user = User.builder()

93

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

.username("user")
.password(passwordEncoder () .encode("userpassw"))
.roles("USER")

.build();

UserDetails admin = User.builder()
.username("admin™)
.password(passwordEncoder () .encode("adminpassw"))
.roles("ADMIN")
.build();

return new InMemoryUserDetailsManager(user, admin);

}

@Bean
public static PasswordEncoder passwordEncoder(){
return new BCryptPasswordEncoder();

The final project will look like Figure 3-11.

94

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

= |PS| pssOl_security v Version control v

Project v

v [pssO1_security
> [@.idea
v @src
v [main
N IEVE]
v [2) com.apress.pss01_security
v [configuration
CustomAuthenticationFailureHandler
SecurityConfiguration
v [controller
UserController

& Pss01SecurityApplication
v [2resources

v [templates
authenticated.html
login.html
welcome.html

o application.properties
> Dtest
> [target
HELP.md
(3 mvnw
= mvnw.cmd
pom.xml

[pss01_security.iml

> (b External Libraries

Run o PssO1SecurityApplication

Jira N)

Figure 3-11. Final project window

Our final pom.xml file is shown in Listing 3-12.

95

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Listing 3-12. Final pom.xml file

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

96

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.5</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.apress</groupIld>
<artifactId>psso1l_security</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>pss01_security</name>
<description>Spring Security demo</description>
<properties>
<java.version>23</java.version>
</properties>
<dependencies>
<dependency>
<groupIld>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-thymeleaf</artifactId>

</dependency>

<dependency>
<groupId>org.thymeleaf.extras</groupld>
<artifactId>thymeleaf-extras-springsecurity6
</artifactId>

</dependency>

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

<dependency>
<groupId>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>

<groupId>org.thymeleaf.extras</groupId>

<artifactId>thymeleaf-extras-springsecurity6

</artifactId>

<version>3.1.1.RELEASE</version>

</dependency>

</dependencies>

</project>

97

CHAPTER 3 JAVA WEB APPLICATION AND SPRING BOOT 3 INITIALIZR

Summary

In this chapter, we covered how to build a Java Web Application using
Spring Security 6 in Spring Boot 3 Initializr. You learned in detail the inner
work of the security filter chain and the different metadata options at your
disposal to define security constraints in your application.

Finally, we learned how to build a customized Spring Security
login form.

In the next chapter, we will cover how to add an H2 Database to Spring
Boot with Spring Security and JDBC authentication.

98

CHAPTER 4

Spring Data JDBC
and H2 Database

Spring Security’s flexibility shines through its support for various
authentication mechanisms that can be seamlessly integrated. It’s
designed with a highly modular, pluggable architecture, allowing
different components to be added to the framework effortlessly. In the
authentication layer, this flexibility is provided by an abstraction layer,
primarily represented by the AuthenticationProvider interface, as well as
by specific security servlet filters and user detail services that support the
process.

Spring Security v6 supports many different authentication
mechanisms, including

e Database

e LDAP

e X.509

e OAuth 2/0OpenID Connect 1.0
e WebSockets

e JSON Web Token (JWT)

e JAAS
o CAS
© Massimo Nardone 2025 99

M. Nardone, Spring Security 6 Recipes, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1297-2_4

https://doi.org/10.1007/979-8-8688-1297-2_4#DOI

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

In this chapter, we will only cover how to add the H2 Database to
Spring Boot with Spring Security and JDBC authentication.

Let’s see how to create a new Spring Boot project with Spring Security,
Spring Data JDBC, and H2 Database.

Problem

How do we create a new Spring Boot project with Spring Security, Spring
Data JDBC, and H2 Database?

Solution

Let’s go to start.spring.io and create a new project, shown in Figure 4-1,
with the following settings:

e Build Tool: Maven

Language: Java

Packaging: Jar
e Java Version: 23
Next, add the following dependencies:
e Web
o Spring Security
o Spring Data JDBC

e H2 Database

100

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

£ spring initializr

O Gradle-Grooyy O Gradle - Kotfin ° O Kotin O Groovy

[Spring Security
Highly customizable authentication and access-control framework for Spring appications.

Spring Boot
O 340(SNAPSHOT) O 340(RC1) O 336 (SNAPSHOT) L] Spring Web m
O 3212(SNAPSHOT) O 3211 Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat as the
default embedded container
Project Metadata
Group com.apress H2security Spring Data J0BC [N

Persist data in SQL stores with piain JDBC using Spring Data
Artfact H2security

H2 Database [E0

Name H2security Provides a fast in-memory database that supports JOBC AP1 and R2DBC access, with a small
(2mb) footprint. Supports embedded and server modes as wel as a browser based console
Description Demo project for Spring Boot Security ad H2 application.

Package name com.apress H2security H2security

Packaging @ O War

Java @ o2 O

O l GENERATE CTRL+ &]I EXPLORE CTRL + SPACE H SHARE... I

Figure 4-1. Creating a new JDBS and H2 DB project

Generate the project and unzip it on your machine.
The new project will look as shown in Figure 4-2.

101

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

H H2security ~ Version control ~

Project

~ [H2security

[.idea

O .mvn

O src

~ [J main

[EVE!

v [EJ com.apress.H curity.H2security

curityApplication

[static
3 templates

w application.properties

S
.gitignore
HELP.md
63 mvnw
= mvnw.cmd
pom.xmil
T th External Libraries

= Scratches and Consoles

Figure 4-2. New JDBS and H2 DB project

Problem

How do we enable H2 in our application.properties file?

102

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Solution

In order to use the H2 in-memory database console, we must enable and
configure it in our application.properties file as follows.
Add the following lines to the application.properties file:

spring.h2.console.enabled=true
spring.datasource.name=securitydb
spring.datasource.url=jdbc:h2:mem:securitydb
spring.jpa.database-platform=org.hibernate.dialect.H2Dialect
spring.datasource.driverClassName=org.h2.Driver

These lines will tell our web application to enable the console, the
name of the DB we wish to use, the datasource URL and driver class, as
well as the Spring JPA DB platform.

Problem

What are the new needed Maven dependencies to be added automatically
to the pom.xml file?

Solution

Here are the new JDBC and H2 Maven dependencies we will find
automatically in the pom.xml file as we selected them when we generated
the new project:

<dependency>
<groupId>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-data-jdbc</artifactId>
</dependency>

103

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

<dependency>
<groupId>com.h2database</groupIld>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>

Listing 4-1 will show the new pom.xml file after generating this new
project.

Listing 4-1. Updated pom.xml file

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.orq/POM/4.0.0"
xmlns:xsi="http://www.w3.0rq/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.5</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.apress.H2security</qgroupId>
<artifactId>H2security</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>H2security</name>
<description>Demo project for Spring Boot Security ad H2
</description>
<url/>
<licenses>
<license/>
</licenses>

104

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

<developers>
<developer/>
</developers>
<scm>
<connection/>
<developerConnection/>
<tag/>
<url/>
</scm>
<properties>
<java.version>23</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-data-jdbc</artifactId>
</dependency>
<dependency>
<groupld>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</qgroupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupId>com.h2database</qgroupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>

105

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

<dependency>
<groupId>org.springframework.boot</qgroupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework.security</qgroupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</qgroupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

</project>

Let’s create some Java classes and HTML files to be used in our project.

Problem

How do we create and configure HTML files for our Spring Security

project?

106

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Solution

Let’s create two simple HTML files under a new project directory called
src/main/resources/templates/.
Your project will utilize two html pages:

e welcome.html, which is the starting welcome web page
of the project

e authenticated.html, which is the admin web page to
access when the user successfully logs in

The welcome.html page is shown in Listing 4-2.

Listing 4-2. welcome.html

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Spring Security 6 authentication example!</title>
</head>
<body>

<div th:if="${param.error}">
Invalid username and password.
</div>
<div th:if="${param.logout}">
You have been logged out.
</div>

107

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

<h2>Welcome to Spring Security 6 authentication example!</h2>

<p>Click <a th:href="@{/authenticated}">here to get
authenticated!</p>

</body>
</html>

The welcome.html page will only display a welcoming message and
provide the link to the authenticated page, /authenticated.

Problem

How do we create an HTML page to get a user authenticated in H2?

Solution

Let’s create the authenticated.html page as shown in Listing 4-3.

Listing 4-3. authenticated.html

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org"
xmlns:sec="https://www.thymeleaf.org/thymeleaf-extras-
springsecurity6">
<head>
<title>Spring Security 6 authentication example</title>
</head>
<body>
<h2>Welcome to Spring Security 6 authentication example!</h2>
<h2 th:inline="text">You are an authenticated user: thymeleaf!</h2>

108

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

<p>click <a th:href="@{/logout}">here to logout!!</p>
<form th:action="@{/h2-console}" method="post">

<input type="submit" value="check the h2-console"/>
</form>

</body>
</html>

This will simply create a new button once the user is authenticated to
open the H2 console and check the databases updated using our example.

The Java class named UserController will remain the same as in
Chapter 3.

Problem

How do we update our Java code to use the H2 embedded database?

Solution

Let’s update now the SecurityConfiguration Java class file we created in
Chapter 3 to use the H2 embedded database as shown in Listing 4-4.

Listing 4-4. Updated SecurityConfiguration Java class
package com.apress.H2security.H2security.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.
EmbeddedDatabase;

import org.springframework.jdbc.datasource.embedded.
EmbeddedDatabaseBuilder;

109

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

import org.springframework.jdbc.datasource.embedded.
EmbeddedDatabaseType;

import org.springframework.security.config.Customizer;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.jdbc.
JdbcDaoImpl;

import org.springframework.security.crypto.bcrypt.
BCryptPasswordEncoder;

import org.springframework.security.crypto.password.
PasswordEncoder;

import org.springframework.security.provisioning.
JdbcUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;
import org.springframework.security.web.util.matcher.
AntPathRequestMatcher;

import javax.sql.DataSource;

@Configuration
@EnableWebSecurity

public class SecurityConfiguration {

@Bean
public SecurityFilterChain filterChaini(HttpSecurity http)
throws Exception {

http

.csrf(csrf -> csrf.ignoringRequestMatchers("/h2-
console/**"))

110

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

.authorizeHttpRequests((authorize) -> authorize
.requestMatchers("/", "/welcome").
permitAll()
//.requestMatchers("/authenticated").
hasRole("ADMIN")
.requestMatchers("/authenticated").
hasAnyRole("USER", "ADMIN")
.requestMatchers(AntPathRequest
Matcher.antMatcher("/h2-console/**")).
permitAll()

)

.csrf(csrf -> csrf
.ignoringRequestMatchers(AntPathRequest
Matcher.antMatcher("/h2-console/**")))

.formLogin(Customizer.withDefaults())
.headers(headers -> headers.disable())

.logout((logout) -> logout
.logoutSuccessUrl("/welcome")
.deleteCookies("ISESSIONID")
.invalidateHttpSession(true)
.permitAll()

);
return http.build();
}

@Bean
EmbeddedDatabase datasource() {
return new EmbeddedDatabaseBuilder()
.setName("securitydb")

111

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

.setType(EmbeddedDatabaseType.H2)
.addScript(JdbcDaoImpl.DEFAULT USER SCHEMA DDL
LOCATION)

.build();

}

@Bean
JdbcUserDetailsManager users(DataSource dataSource,
PasswordEncoder encoder) {

UserDetails user = User.builder()
.username("user")
.password(encoder.encode("userpassw"))
.roles("USER")

.build();

UserDetails admin = User.builder()
.username("admin™)
.password(encoder.encode("adminpassw"))
.roles("ADMIN")

.build();

JdbcUserDetailsManager jdbcUserDetailsManager = new

JdbcUserDetailsManager (dataSource);

jdbcUserDetailsManager.createUser(user);

jdbcUserDetailsManager.createUser (admin);
return jdbcUserDetailsManager;

}

@Bean
public static PasswordEncoder passwordEncoder(){
return new BCryptPasswordEncoder();

112

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Let’s analyze this new Java class.

The PasswordEncoder bean will stay the same as per previous
examples.

Spring Security’s JdbcDaolmpl implements UserDetailsService to
provide support for username- and password-based authentication that is
retrieved by using JDBC. JdbcUserDetailsManager extends JdbcDaolmpl
to provide management of UserDetails through the UserDetailsManager
interface. UserDetails-based authentication is used by Spring Security
when it is configured to accept a username/password for authentication.

Spring Security provides default queries for JDBC-based
authentication, which of course we can adjust the schema to match any
customizations to the queries and the database dialect we use.

Problem

How do the JdbcDaolmpl required tables look like?

Solution

JdbcDaolmpl requires tables to load the password, account status
(enabled or disabled), and a list of authorities (roles) for the user. The
default schema is also exposed as a classpath resource named org/
springframework/security/core/userdetails/jdbc/users.ddl, which is
provided in the following listing:

create table users(
username varchar_ignorecase(50) not null primary key,
password varchar_ignorecase(500) not null,
enabled boolean not null

)5

113

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

create table authorities (
username varchar_ignorecase(50) not null,
authority varchar ignorecase(50) not null,
constraint fk_authorities users foreign key(username)
references users(username)

)s

Before we configure JdbcUserDetailsManager, we must create a
DataSource, and in our example, we set up an embedded DataSource
that is initialized with the default user schema via the EmbeddedDatabase
datasource bean created to build a new H2 Database, in our case named
“securitydb,” using the preconfigured JDBC Dao Implementation default
user DDL via the line

"DIdbcDaoImpl.DEFAULT USER SCHEMA DDL_LOCATION"

@Bean

EmbeddedDatabase datasource() {

return new EmbeddedDatabaseBuilder()

.setName("securitydb")
.setType(EmbeddedDatabaseType.H2)
.addScript(JdbcDaoImpl.DEFAULT USER SCHEMA DDL
LOCATION)
.build();

The next step will be creating the JdbcUserDetailsManager bean as
described in Listing 4-5.

Listing 4-5. JdbcUserDetailsManager Java bean

@Bean
JdbcUserDetailsManager users(DataSource dataSource,
PasswordEncoder encoder) {
UserDetails user = User.builder()
.username("user")

114

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

.password(encoder.encode("userpassw"))
.roles("USER")
.build();

UserDetails admin = User.builder()
.username("admin")
.password(encoder.encode("adminpassw"))
.roles("ADMIN")

.build();

JdbcUserDetailsManager jdbcUserDetailsManager = new

JdbcUserDetailsManager (dataSource);

jdbcUserDetailsManager.createUser(user);

jdbcUserDetailsManager.createUser(admin);
return jdbcUserDetailsManager;

In our example, we will create two users needed to access the

authenticated resource such as “user/userpassw” and “admin/

adminpassw.”

Our last bean will be, as usual, the SecurityFilterChain bean as

shown in Listing 4-6.

Listing 4-6. SecurityFilterChain Java bean

@Bean
public SecurityFilterChain filterChaini(HttpSecurity http)
throws Exception {

http

.authorizeHttpRequests((authorize) -> authorize
.requestMatchers("/", "/welcome").
permitAll()
.requestMatchers("/authenticated").
hasAnyRole("USER", "ADMIN")

115

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

.requestMatchers(AntPathRequestMatcher.
antMatcher("/h2-console/**")).permitAll()

)

.csrf(csrf -> csrf
.ignoringRequestMatchers(AntPathRequest
Matcher.antMatcher("/h2-console/**")))

.formLogin(Customizer.withDefaults())
.headers(headers -> headers.disable())

.logout((logout) -> logout
.logoutSuccessUrl("/welcome")
.deleteCookies("ISESSIONID")
.invalidateHttpSession(true)
.permitAll()

)5
return http.build();

In this bean, first of all, we create two “requestMatchers”:

o .requestMatchers("/", "/welcome").permitAll() to
permit all to access “/” and “welcome” pages

o .requestMatchers("/authenticated").
hasAnyRole("USER", "ADMIN") to permit the user and
admin to access the authenticated page

o .requestMatchers(AntPathRequestMatcher.ant
Matcher("/h2-console/**")).permitAll() to permit
to access the H2 console

116

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Since our Spring Boot project uses Spring Security and we have
the class that is annotated with @EnableWebSecurity annotation, we
must disable the HTTP Header Frame Options; add the following to the
configure() method of that class.

The frame options are necessary to prevent a browser from loading
your HTML page in an <iframe> or <frame> tag. To enable the H2 console
page to load, you need to disable this option with this line:

.headers(headers -> headers.disable())
The line .csrf(csrf -> csrf

.ignoringRequestMatchers(AntPathRequestMatcher.antMatcher("/h2-
console/**")))

will allow ignoring the RequestMatchers for the H2 console path "/h2-
console/**".

Build and run our Spring Boot application and open the URL http://
localhost:8080/welcome in our browser window and authenticate with
user “user/userpassw” or “admin/adminpassw,” as shown, for example, in
Figures 4-3 and 4-4.

@ O (3 Spring Security 6 authentication ¢ X = =

< @] (D localhost:8080/welcome

Welcome to Spring Security 6 authentication example!
Click here to get authenticated!

Figure 4-3. welcome.html page

117

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

© O [Pleasesignin x 4+ = [m} X
&« C (@ localhost:8080/login A Ty m) o

Please sign in

Username

Figure 4-4. Login page

As in the previous example, if authenticated we will access the
authenticated.html page, which this time will not only inform that admin
is an authenticated user but also provide us a “check the h2-console
button” as shown in Figure 4-5.

© 0O (3 Spring Security62 x =+ - O X

< O (D localhost:8080/authe... 2 A ¥ m - o

Welcome to Spring Security 6 authentication
example!

You are an authenticated user: admin!

‘ Logout

‘ check the h2-console

Figure 4-5. authenticated.html page

118

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Problem

How do we open and configure the H2 console?

Solution

We open the H2 console when we click the “check the h2-console” button
to log in to the H2 console as shown in Figure 4-6.

‘ @ D D H2 Console X + — 0 x

&< O (® localhost:8080/h2-console/l... A ¥ M e o

| English V| Preferences Tools Help

Saved Settings: | Generic H2 (Embedded) V|
Setting Name: | Generic H2 (Embedded) | \%\ \@\
Driver Class: | org.h2.Driver |
JDBC URL: ‘jdbc:hZ:mem:securitydb |
User Name: ‘sa 1

Password: | ‘

‘ Connect‘ ‘ Test Connection

Figure 4-6. H2 login console page

119

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Let’s connect now to the H2 and discover the content as shown in

Figure 4-7.

@ O [H2Console x IS - (=] X

&< O @ localhost:8080/h2-console/login.do?jse... A ¥ m = % o 0

8| mAuto 0 0 1000 v O O ‘ Auto complete [Off VJMlect @
(] jdbc:h2:mem:securitydb Run || Run Selected || Auto complete | |Clear SQL statement:
[AUTHORITIES
® [USERS
& (] INFORMATION_SCHEMA
B {§ Users
(@ H22.1.214 (2022-06-13)
®@ Displays this Help Page

Shows the Command History
0 Ctrl+Enter |Executes the current SQL statement
Q Shift+Enter Executes the SQL statement defined by the text selection
Ctrl+Space Auto complete

& Disconnects from the database

Sample SQL Script

4
a
Important Commands
Delete the table if it exists | DROP TABLE IF EXISTS TEST;

Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY,
with ID and NAME columns, NAME VARCHAR(255));

Add a new row INSERT INTO TEST VALUES(1, 'Hello');

Add another row INSERT INTO TEST VALUES(2, 'World");

Query the table SELECT * FROM TEST ORDER BY ID

Change data in a row UPDATE TEST SET NAME="Hi' WHERE ID=1;

Remove a row DELETE FROM TEST WHERE ID=2

Help HELP ...

Adding Database Drivers

Additional database drivers can be registered by adding the Jar file location of the driver to the

Figure 4-7. H2 console page with securitydb DB tables

As you will see, the H2 console will include the two tables used for this
example via JDBC authentication, such as authorities and users.

120

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

Problem

How do we run SQL scripts against the securitydb database to see the
content of the tables?

Solution

When running the SQL script SELECT * FROM AUTHORITIES, the result
will be shown in Figure 4-8.

(fﬂ (im) D H2 Console x 4+ - [} X

& E© @ localhost:8080/h2-console/login.do?jse... A ¥ M = % o 9
o[§ Auto 0 % Max - L Auto complete | Off v | Auto select -
- [1000 vI & O —dr— 2
] jdbc:h2:mem:securitydb Run || Run Selected | Auto complete| |Clear | SQL statement
& [AUTHORITIES SELECT * FROM AUTHORITIES
® B USERS
(] INFORMATION_SCHEMA
B {§h Users

(D H2 2.1.214 (2022-06-13)

SELECT * FROM AUTHORITIES;
USERNAME |AUTHORITY
admin ROLE_ADMIN
user ROLE_USER

(2 rows, 2 ms)

Edit
Figure 4-8. H2 authorities table script outcome

So we have two new authorities, “admin/ROLE_ADMIN” and “user/
ROLE_USER,’ in our authorities DB.

When running the SQL script SELECT * FROM USERS, the result will
be shown in Figure 4-9.

121

CHAPTER 4 SPRING DATA JDBC AND H2 DATABASE

© [(3 H2console x EEE = (] X

&« C ©) 2-console/login.do?jse A % m = % e o
o Auto 0 D yax - || = A complete [Off | Auto select _
1000 v| 3 O 1 @
] jdbc:h2:mem:securitydb Run || Run Selected || Auto complete | Clear SQL statement:
® [AUTHORITIES SELECT * FROM USERS |
[USERS
& () INFORMATION_SCHEMA
B {§ Users

(@) H2 2.1.214 (2022-06-13)

SELECT * FROM USERS

USERNAME |PASSWORD ENABI
user $2a$1081cxiPXIpMRG/Pk. TY8rO8uNINUFOKaQwFMCEVs67/Nn7eF404sZ3m | TRUE
admin $2a$108v3HITduyVYmxwiXlak/QSO3bvmJEVBLLrRgLBIKCQILRNvsw02NUG | TRUE
(2 rows, 1 ms)

Edit

Figure 4-9. H2 users table script outcome

We will have two new enabled users, “user/userpassw” and “admin/
adminpassw,” to be used to authenticate our example.

Summary

In this chapter, we introduced how you can use Spring Security’s modular
architecture to integrate different authentication mechanisms with relative
ease, and then we focused and explained how to authenticate your users
against the H2 Database.

This chapter focused on the H2 Database and Spring JDBC, but of
course as per our introduction, you can use many different authentication
providers like LDAP, X.509, OAuth 2/OpenID Connect 1.0, JSON Web
Token (JWT), etc.

122

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Development Tools
	What Is Spring Security 6?
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Summary

	Chapter 2: Java Web Application with Spring Security, JSP Tags, and Thymeleaf
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Summary

	Chapter 3: Java Web Application and Spring Boot 3 Initializr
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Summary

	Chapter 4: Spring Data JDBC and H2 Database
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Summary

